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a b s t r a c t 

Evidence of the non stationary behavior of functional connectivity (FC) networks has been observed in 

task based functional magnetic resonance imaging (fMRI) experiments and even prominently in resting 

state fMRI data. This has led to the development of several new statistical methods for estimating this 

time-varying connectivity, with the majority of the methods utilizing a sliding window approach. While 

computationally feasible, the sliding window approach has several limitations. In this paper, we circum- 

vent the sliding window, by introducing a statistical method that finds change-points in FC networks 

where the number and location of change-points are unknown a priori. The new method, called cross- 

covariance isolate detect (CCID), detects multiple change-points in the second-order (cross-covariance or 

network) structure of multivariate, possibly high-dimensional time series. CCID allows for change-point 

detection in the presence of frequent changes of possibly small magnitudes, can assign change-points 

to one or multiple brain regions, and is computationally fast. In addition, CCID is particularly suited to 

task based data, where the subject alternates between task and rest, as it firstly attempts isolation of 

each of the change-points within subintervals, and secondly their detection therein. Furthermore, we also 

propose a new information criterion for CCID to identify the change-points. We apply CCID to several 

simulated data sets and to task based and resting state fMRI data and compare it to recent change-point 

methods. CCID may also be applicable to electroencephalography (EEG), magentoencephalography (MEG) 

and electrocorticography (ECoG) data. Similar to other biological networks, understanding the complex 

network organization and functional dynamics of the brain can lead to profound clinical implications. 

Finally, the R package ccid implementing the method from the paper is available from CRAN. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Functional connectivity (FC) is the undirected association be- 

ween two or more functional magnetic resonance imaging (fMRI) 

ime series. Evidence of the non stationary behavior of FC (or FC 

etworks) has been observed in high temporal resolution elec- 

roencephalography (EEG) data, task based fMRI experiments ( Fox 

t al., 2005; Debener et al., 2006; Cribben et al., 2012; 2013 ) and

ven prominently in resting state fMRI data ( Delamillieure et al., 

010; Doucet et al., 2012; Cribben and Yu, 2017; Ofori-Boateng 

t al., 2020 ). By estimating a FC network across the entire experi- 

ental time course, the resulting FC network is simply an average 

f the changing connectivity structures. While this is convenient 
∗ Corresponding author. 

E-mail addresses: anastasiou.andreas@ucy.ac.cy (A. Anastasiou), 

ribben@ualberta.ca (I. Cribben), p.fryzlewicz@lse.ac.uk (P. Fryzlewicz). 

(

t

m

a

y

ttps://doi.org/10.1016/j.media.2021.102252 

361-8415/© 2021 Elsevier B.V. All rights reserved. 
or estimation and computation purposes, as it keeps the FC net- 

ork estimation from becoming too complex, it presents a simpli- 

ed version of a highly integrated and dynamic phenomenon. 

In order to estimate this time varying phenomenon (or dynamic 

C as it is widely known), many research papers first considered a 

liding (or moving) window. These approaches begin at the first 

ime point, then a block of a fixed number of time points (the 

indow) are selected and all the data points within the block 

re used to estimate the FC. The window is then shifted a cer- 

ain number of time points (overlapping or non-overlapping) and 

he FC is estimated on the new data. By shifting the window to 

he end of the experimental time course, researchers can esti- 

ate the dynamic FC. Chang and Glover (2010) , Kiviniemi et al. 

2011) , Hutchison et al. (2013b) and Leonardi et al. (2013) inves- 

igated the dynamic functional FC in resting-state data using a 

oving-window approach, based on a time-frequency coherence 

nalysis with wavelet transforms, an independent component anal- 

sis, a correlation analysis, and a principal component analysis, 

https://doi.org/10.1016/j.media.2021.102252
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espectively. Allen et al. (2014) , Handwerker et al. (2012) , Jones 

t al. (2012) and Sako ̆glu et al. (2010) considered a group inde- 

endent component analysis ( Calhoun et al., 2001 ) to decompose 

ulti-subject resting-state data into functional brain regions, and a 

oving-window and k -means clustering of the windowed correla- 

ion matrices to study whole brain dynamic FC networks. While 

he sliding window approach is computationally feasible, it also 

as limitations ( Hutchison et al., 2013a ). For example, the choice of 

indow size is crucial and sensitive, as different window sizes can 

ead to quite different FC patterns. Another disadvantage is that 

qual weight is given to all k neighbouring time points and 0 wt 

o all the others ( Lindquist et al., 2014 ). Other methods have also

een proposed that do away with the sliding window. For exam- 

le, Zhang et al. (2014) proposed the dynamic Bayesian variable 

artition model that estimates and models multivariate dynamic 

unctional interactions using a unified Bayesian framework. 

Change-point methods have also been considered. There exists 

n extensive literature and a long history on change-points. The 

ost widely discussed problems have been concerned with finding 

ultiple change-points in univariate time series ( Inclan and Tiao, 

994; Chen and Gupta, 1997 ). Recently, the multiple change-point 

etection problem in multivariate time series has received some 

ttention especially in non-stationary practical problems ( Fan et al., 

011 ). High dimensional time series change-point detection prob- 

ems are the obvious but by no means straightforward extension of 

he univariate case. To detect changes in the covariance matrix of a 

ultivariate time series, Aue et al. (2009) introduced a method us- 

ng a nonparametric CUSUM type test, Dette and Wied (2016) pro- 

osed a test where the dimension of the data is fixed while Kao 

t al. (2018) considered the case where the dimension of the data 

ncreases with the sample size (they also investigated change-point 

nalysis based on Principal Component Analysis). Sundararajan and 

ourahmadi (2018) proposed a new method for detecting mul- 

iple change-points in the covariance structure of a multivariate 

iecewise-stationary process. 

In other related work, Barnett and Onnela (2016) considered 

 method for detecting change-points in correlation networks 

hat, unlike previous change-point detection methods designed 

or time series data, requires minimal distributional assumptions. 

ibberd and Nelson (2014) studied the consistency properties of 

 regularised estimator for the simultaneous identification of both 

hange-points and the graphical dependency structure in multi- 

ariate time series. The first comprehensive treatment of high di- 

ensional time series factor models with multiple change-points 

n their second–order structure is put forward by Barigozzi et al. 

2018) . Li et al. (2019) considered multiple structural breaks in 

arge contemporaneous covariance matrices of high dimensional 

ime series satisfying an approximate factor model. Cho and Fry- 

lewicz (2015) segmented the multivariate time series into par- 

itions based on the secondorder structure. Within neuroscience, 

ribben et al. (2012, 2013) put forward the Dynamic Connectiv- 

ty Regression method for detecting multiple change-points in the 

recision matrices (or undirected graph) from a multivariate time 

eries. Schröder and Ombao (2019) introduced FreSpeD that em- 

loyed a multivariate cumulative sum (CUSUM)-type procedure to 

etect change-points in autospectra and coherences for multivari- 

te time series. Their method allows for the segmentation of the 

ultivariate time series but also for the direct interpretation of 

he change in the sense that the change-point can be assigned 

o one or multiple time series (or Electroencephalogram chan- 

els) and frequency bands. Kirch et al. (2015) considered the At 

ost One Change setting and the epidemic setting (two change- 

oints, where the process reverts back to the original regime af- 

er the second change-point) and provide some theoretical results. 

ribben and Yu (2017) introduced the Network Change Point De- 

ection method that uses an eigen-space based statistic for testing 
2 
he community structures changes in stochastic block model se- 

uences. More recently, Kundu et al. (2018) proposed a fully au- 

omated two-stage approach which pools information across mul- 

iple subjects to estimate change-points in functional connectivity, 

hile Dai et al. (2019) developed a formal statistical test for find- 

ng change-points in time series associated with FC. Finally, Ofori- 

oateng et al. (2020) introduced a new method that firstly presents 

ach network snapshot of fMRI data as a linear object and finds 

ts respective univariate characterization via local and global net- 

ork topological summaries and then adopts a change-point de- 

ection method for (weakly) dependent time series based on effi- 

ient scores. 

All of these methods have limitations. The most obvious is that 

hey all use binary segmentation (BS) to identify multiple change- 

oints. BS, while computationally feasible, is not optimal as it 

earches for a single change-point at a time. Hence, BS struggles to 

nd multiple change-points in task based fMRI experiments, where 

he subject alternates between two states, rest and task, as the net- 

ork structure for any two segments in the data split by a change- 

oint is very similar. Furthermore, it is difficult for BS to find fre- 

uent changes of possibly small magnitudes. In addition, many of 

he previous methods ( Cribben et al., 2012; 2013; Schröder and 

mbao, 2019; Kirch et al., 2015; Dai et al., 2019 ) can only con- 

ider a relatively low number (up to p= 30) of time series from 

ither the channels or brain regions. Hence, their ability to detect 

hole brain connectivity change-points is impeded. In order to in- 

lude a large number of time series, other methods ( Cribben and 

u, 2017; Ofori-Boateng et al., 2020; Ondrus et al., 2021 ) perform a 

imension reduction technique, such as singular value decomposi- 

ion or summarize the network using graph summary statistics, to 

he data to make the problem more computationally feasible, but 

ay lose information from the network structure, and hence the 

hange-points therein, in this process. 

In this paper, we introduce a new method, called cross- 

ovariance isolate detect (CCID), to detect multiple change-points 

n the second-order structure of multivariate, possibly high- 

imensional time series. The second-order structure can also be re- 

erred to as the dependence structure, the cross-covariance struc- 

ure or the network structure, between the time series. CCID be- 

ins by first converting the multivariate time series (or regions of 

nterest time series) into local wavelet periodograms and cross- 

eriodograms. To detect the change-points, CCID aggregates across 

he multivariate time series through the L 2 or the L ∞ 

metric and 

hen uses a scaled CUSUM statistic to decide whether a candi- 

ate is indeed a change-point or not, based on whether the rel- 

vant scaled CUSUM value is larger than an appropriately chosen 

hreshold. Furthermore, we propose a new information criterion 

or CCID as an alternative approach to the threshold method for 

he change-point detection problem. CCID has the following unique 

nd important attributes. First, CCID uses the Isolate-Detect princi- 

le ( Anastasiou and Fryzlewicz, 2021 ) to find the multiple change- 

oints. CCID works by first isolating each of the change-points 

ithin subintervals and then secondly detecting them within these 

ubintervals. For general data sets we consider in this work, we 

nd that CCID performs as well as, if not better than, the pre- 

ious methods that use BS. However, for our simulations, where 

he subject alternates between two states and for our task based 

MRI experiment, CCID clearly outperforms the BS methods. This 

s due to CCID’s ability to isolate the change-points between tasks 

hile BS looks to partition the data into two intervals which is 

articularly difficult given the similarity between any two parti- 

ions (for this particular data type) and the fact that BS tends not 

o handle frequent change-point scenarios well. Second, CCID has 

he ability to find change-points that are very close to one an- 

ther, which provides more insight into functional dynamics of 

he brain. Third, after detecting the change-points, CCID can as- 
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ign them to one or multiple brain regions. Fourth, CCID is com- 

utationally fast. Fifth, CCID may also be applicable to electroen- 

ephalography (EEG), magentoencephalography (MEG) and electro- 

orticography (ECoG) data. Finally, the R package ccid implement- 

ng the method from the paper is available from CRAN. 

The remainder of this paper is organized as follows. We intro- 

uce our new method, CCID, in Section 2 . We describe our sim- 

lated data and our fMRI data in Section 3 . The performance of 

he proposed method on both the simulated and real data is de- 

ailed in Section 4 . A discussion of the limitations of the method 

nd future work is described in Section 5 . Finally, we conclude in 

ection 6 and provide details on the R package ccid in Section 7 . 

. Materials and methods 

Let X ∈ R 

T ×p be a multivariate time series with T time points 

nd p regions of interest (ROIs: or data sequences). We assume 

hat each univariate time series within X follows a Gaussian distri- 

ution. Smith et al. (2011) conclude that the Gaussian assumption 

s valid on good-quality fMRI data. We show how cross-covariance 

solate detect (CCID) can be adapted to detect multiple change- 

oints in the second-order (or cross-covariance) structure of mul- 

ivariate, possibly high-dimensional time series. The second-order 

tructure can also be referred to as the dependence structure, the 

ross-covariance structure or the network structure, between the 

ime series. CCID first constructs wavelet-based local periodogram 

nd cross-periodogram sequences from X , to which we apply the 

solate-detect principle ( Anastasiou and Fryzlewicz, 2021 ) to find 

ultiple change-points in the second order structure of X . 

.1. Wavelets 

A wavelet is a wave-like oscillation. Its amplitude begins at 

ero, increases (decreases), and then decreases (increases) back to 

ero. In wavelet theory, the wavelet correlates with another signal 

f it is of similar frequency at the location overlapping with the 

upport of the wavelet. As a mathematical tool, wavelets can be 

sed to extract information from many different types of data. We 

se wavelets in this work to transform the problem of detecting 

hange-points in the second-order structure of the process to the 

xpectations of the wavelet cross-periodograms and to “whiten”

he data. For a detailed review of wavelets we refer readers to 

aubechies (1992) and Vidakovic (2009) . 

.2. Locally stationary wavelet model 

By way of introduction, we consider Haar wavelets (the sim- 

lest example of a wavelet system) which are defined as 

 

H 
i,k = 2 

i/ 2 
I (0 ≤ k ≤ 2 

−i −1 ) − 2 

i/ 2 
I (2 

−i −1 ≤ k ≤ 2 

−i − 1) , (1)

here i ∈ {−1 , −2 , . . . } and k ∈ Z denote scale and location param-

ters, respectively. Small negative values of the scale parameter i 

enote fine scales where the wavelet vectors are the most localized 

nd oscillatory, while large negative values denote coarse scales 

ith longer, less oscillatory wavelet vectors. With such wavelets 

s building blocks, we introduce the p-variate Locally Stationary 

avelet (LSW: Cho and Fryzlewicz, 2015 ) model as follows: 

Definition 1 . The p-variate LSW process { X t,T = 

X (1) 
t,T 

, . . . , X 
(p) 
t,T 

) 
′ } T 

t=0 
for T = 1 , 2 , . . . , is a triangular stochastic

rray with the following representation: 

 

( j) 
t,T 

= 

−1 ∑ 

i = −∞ 

∞ ∑ 

k = −∞ 

W 

( j) 
i 

(k/T ) ψ i,t−k ξ
( j) 
i,k 

, for each j = 1 , . . . , p, (2)

here ξi,k = (ξ (1) 
i,k 

, ξ (2) 
i,k 

, . . . , ξ (p) 
i,k 

) 
′ 

are independently generated 

rom multivariate normal distributions N p { 0 , �i (k/T ) } , with 
3 
( j, j) 
i 

(k/T ) = 1 and 

ov (ξ ( j) 
i,k 

, ξ (l) 

i ′ ,k ′ ) = 

{ 

δi,i ′ δk,k ′ �
( j, j) 
i 

(k/T ) = δi,i ′ δk,k ′ when j = l, 

δi,i ′ δk,k ′ �
( j,l) 
i 

(k/T ) when j � = l. 
(3) 

he Kronecker delta function δ
i,i 

′ is 1 when i = i 
′ 

and 0 otherwise. 

or each i and j, l = 1 , . . . , p, the functions W 

( j) 
i 

(k/T ) : [0 , 1] −→
 ≥ 0 and �( j,l) 

i 
(k/T ) : [0 , 1] −→ R are piecewise-constant with an

nknown number of change-points. The autocovariance and cross- 

ovariance functions of X t,T approximately inherit the piecewise- 

onstant property of W 

( j) 
i 

(. ) and �( j,l) 
i 

(. ) with almost identical 

hange-point locations. See Cho and Fryzlewicz (2015) for details. 

.3. Wavelet periodograms and cross-periodograms 

We now construct appropriate wavelet-based local periodogram 

equences from the p-variate LSW time series X t,T . With the 

mpirical wavelet coefficients at scale i denoted by w 

( j) 
i,t,T 

= 

 

u X 
( j) 
u,T 

ψ i,t−u for each X 
( j) 
t,T 

, j = 1 , . . . , p, the wavelet periodogram

f X 
( j) 
t,T 

and the wavelet cross-periodogram between X 
( j) 
t,T 

and X (l) 
t,T 

t scale i are defined as 

I ( j, j) 
i,t,T 

≡ I j 
i,t,T 

= 

(
w 

( j) 
i,t,T 

)2 
, 

I ( j,l) 
i,t,T 

= w 

( j) 
i,t,T 

.w 

(l) 
i,t,T 

, 
(4) 

espectively. As X 
( j) 
t,T 

is Gaussian, w 

( j) 
i,t,T 

is also Gaussian, hence each 

 

( j, j) 
i,t,T 

follows a scaled χ2 
1 

distribution. 

For a multivariate LSW process X t,T , its theoretical (population) 

ocal autocovariance and cross-covariance functions are defined by 

c ( j, j) 
T 

(z, τ ) = c ( j) 
T 

(z, τ ) = cov 

(
X 

j 

� zT � ,T , X 

j 

� zT � + τ,T 

)
c ( j,l) 

T 
(z, τ ) = cov 

(
X 

j 

� zT � ,T , X 

l 
� zT � + τ,T 

)
, 

(5) 

n the multivariate LSW model, Cho and Fryzlewicz (2015) showed 

hat there is an asymptotic one-to-one correspondence be- 

ween these theoretical local autocovariance and cross-covariance 

unctions, the population wavelet periodograms and cross- 

eriodograms, and the expectations of wavelet periodograms and 

ross-periodograms. Specifically, there exists an asymptotic one- 

o-one correspondence for any pair of X 
( j) 
t,T 

and X (l) 
t,T 

between 

he following quantities: the autocovariance and cross-covariance 

unctions c 
( j) 
T 

(z, τ ) , c (l) 
T 

(z, τ ) and c 
( j,l) 
T 

(z, τ ) at lags τ = 0 , 1 , . . . ,

iecewise-constant functions W 

( j) 
i 

(z) 
2 
, W 

(l) 
i 

(z) 
2 

and �( j,l) 
i 

(z) and 

he expectations of wavelet periodograms and cross-periodograms 

 I 
( j) 
i,t,T 

, E I (l) 
i,t,T 

and E I 
( j,l) 
i,t,T 

at scales i = −1 , −2 , . . . . Therefore, the

hange-points in the second order structure of the multivariate 

ime series X t,T can be detected from the wavelet periodograms 

nd cross-periodograms at multiple scales. 

We now focus on the wavelet periodogram I 
( j) 
i,t,T 

and the cross- 

eriodogram I 
( j,l) 
i,t,T 

, and use them as the inputs into the CCID al- 

orithm. We firstly note that E I 
( j) 
i,t,T 

are piecewise-constant except 

or negligible biases around the change-points. Since I 
( j,l) 
i,t,T 

does not 

ollow a multiplicative model, we consider instead the following 

lternative: 

˜ 
 

( j,l) 
i,t,T 

= 

(
w 

( j) 
i 

− sign 

(
ˆ cor 
(
w 

( j) 
i,t,T 

, w 

(l) 
i,t,T 

))
.w 

(l) 
i,t,T 

)2 
(6) 

here ˆ cor is the sample correlation computed separately on each 

urrent segment (data between change-points). This is a multi- 

licative model but results in no loss of information about any 

hange-points, see Cho and Fryzlewicz (2015) . 
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There are four main advantages for using wavelets (the 

SW model) in our CCID model for the purpose of change- 

oint detection. First, there is one-to-one correspondence be- 

ween the auto/cross-covariance structure of a time series, and its 

avelet spectrum, or alternatively its (population) wavelet cross- 

eriodograms. The (population) wavelet cross-periodogram repre- 

entation, enabled by using the wavelet model, is the most con- 

enient of the three for the purpose of change-point detection. 

he reason is that the natural estimator of the population wavelet 

cross-)periodogram is the empirical wavelet (cross-)periodogram, 

hich is a scaled χ2 distributed quantity under Gaussianity (and 

ollows a general multiplicative model under other distributions). 

his makes it particularly suited for segmentation ( = change-point 

etection) as a great deal is known in the literature ( Inclan 

nd Tiao, 1994; Cho and Fryzlewicz, 2015 ) about segmenting 

ultiplicative-model data sequences of the form present in the 

mpirical wavelet (cross-)periodograms. Second, a known difficult 

ssue arising in time series segmentation is the presence of auto- 

orrelation in the data, which can ‘fool’ change-point detectors as 

atural fluctuations in the time series due to autocorrelations can 

ask as change-points, and vice versa. The use of wavelets (we 

eed to take a wavelet transform of the data in order to compute 

he empirical cross-periodograms) are helpful here due to their 

ell-known whitening property ( Vidakovic, 2009 ), whereby they 

end to reduce positive autocorrelation in time series, hence mak- 

ng the change-point detection problem easier. Third, the whole ar- 

ay of the wavelet periodograms at all scales are easily and rapidly 

omputable via the wavelet transform. Fourth, the normality as- 

umption in LSW is reasonable for high quality fMRI data. 

.4. Model specification 

With p being the dimensionality of the initial given time se- 

ies, we assume the following multiplicative model for the peri- 

dograms I 
( j) 
i,t,T 

and cross periodograms ˜ I 
( j,l) 
i,t,T 

for i = 1 , . . . , p, and 

 = Jp(p + 1) / 2 (assuming J scales), by transforming our data to 

eriodograms and cross periodograms, which we denote as Y : 

 

(k ) 
t,T 

= σ (k ) 
t,T 

(
(Z t,T ) 

(k ) 
)2 

, t = 1 , 2 , . . . , T , k = 1 , 2 , . . . , d, (7)

here Y (k ) 
t,T 

are the observed data related to the k th data sequence, 
(k ) 

t,T 
is a piecewise-constant mean function and Z (k ) 

t,T 
is a sequence 

f (possibly) auto-correlated standard normal random variables. 

his means that Y (k ) 
t,T 

is a scaled χ2 
1 

-random variable, as the empir- 

cal wavelet periodogram is a squared zero-mean normal variables 

 Cho and Fryzlewicz, 2012 ), with E 

(
Y (k ) 

t,T 

)
= σ (k ) 

t,T 
> 0 . Our purpose

s to detect the number and the location of changes in the mean of 
(k ) 

t,T 
, for any k ∈ { 1 , 2 , . . . , d } , with each change-point being possi- 

ly shared by more than one data sequence. We only consider the 

nest scale of i = −1 used in the wavelet transformation as fMRI 

ata typically only have lag 1 autocorrelation ( Fiecas et al., 2017; 

rbabshirani et al., 2014 ). Hence, d = p(p + 1) / 2 . 

In order to detect the change-points we use the following 

tatistic: 

˜ 
 

b, (k ) 
s,e = 

(
1 

e − s + 1 

e ∑ 

t= s 
Y (k ) 

t,T 

)−1 
∣∣∣∣∣
√ 

e − b 

(b − s + 1)(e − s + 1) 

b ∑ 

t= s 
Y (k ) 

t,T 

−
√ 

b − s + 1 

(e − b)(e − s + 1) 

e ∑ 

t= b+1 

Y (k ) 
t,T 

∣∣∣∣∣, (8) 

here 1 ≤ s ≤ b < e ≤ T . The statistic is a (scaled) CUSUM statistic,

here we divide by the sample mean of the observations Y (k ) 
t,T 

with 

 ∈ [ s, e ] . This is necessary in multiplicative settings such as (7) in

rder to make the results independent of the magnitude of σ (k ) 
t,T 

. 
4 
ssentially, the CUSUM statistic compares the means of the data 

o the left and to the right of each postulated change-point loca- 

ion b. To obtain a candidate change-point on any interval [ s, e ] , we

aximise the CUSUM statistic over b: this is where the (scaled) 

ifference in means is the largest, so this will be the likeliest can- 

idate for a change-point. In addition, we note that due to (7) , the

tatistic in (8) is positive. More information on (8) can be found in 

nclan and Tiao (1994) and Cho and Fryzlewicz (2015) . 

.5. CCID 

Our new method, CCID, proceeds as follows. We describe the 

solate-Detect ( Anastasiou and Fryzlewicz, 2021 ) segmentation al- 

orithm illustrated in Fig. 1 . The basic idea is that for the d ob- 

erved data sequences of length T each, and with λT a suitably 

hosen positive integer, Isolate-Detect (ID) first creates two ordered 

ets of K =  T /λT � right- and left-expanding intervals. We collect 

hese intervals in the ordered set S RL = { R 1 , L 1 , R 2 , L 2 , . . . , R K , L K } . 
hen, for each point b in the interval R 1 and for each k = 1 , 2 . . . , d,

e calculate the values of ˜ Y b, (k ) 
1 ,λT 

as in Eq. (8) . As already men- 

ioned, we aggregate the information of each of the d data se- 

uences using either the L 2 or the L ∞ 

metric. For the L 2 approach 

or CCID, we define 

˜ 
 

b,L 2 
s,e = 

1 √ 

d 

√ 

d ∑ 

k =1 

(
˜ Y b, (k ) 
s,e 

)2 
, b ∈ [ s, e ) , (9) 

nd we set b ∗ := argmax 
b∈ R 1 

˜ U 

b,L 2 
1 ,λT 

. If this value exceeds a certain 

hreshold, denoted by ζ
L 2 
T 

, then it is taken as a change-point. If 

ot, then the process tests the next interval in S RL , which in this 

ase would be L 1 . Upon detection the ID methodology makes a 

ew start from the end-point (or start-point, respectively) of the 

ight- (or left-, respectively) expanding interval where the detec- 

ion occurred. At some point we find an interval [ s, e ] that does not

ontain any other change-points because at each stop we expand 

he intervals by λT which is smaller than the minimum distance in 

9) between two change-points; this is where isolation stems from 

s well, which in order to be ensured, the expansion parameter λT 

an be taken to be as small or equal to 1. If now λT > 1 , then iso-

ation is guaranteed with high probability. Theoretically for large 

 , the chosen value for λT (this typically is small; see Anastasiou 

nd Fryzlewicz (2021) for more details) is guaranteed to be smaller 

han the minimum distance δT (which is unknown but has to grow 

ith T ) between two consecutive change-points. 

The L ∞ 

approach works similarly. However, instead of using the 

uclidean distance in (9) , we use 

˜ 
 

b,L ∞ 
s,e = max 

k ∈ { 1 , 2 , ... ,d } 
{∣∣ ˜ Y b, (k ) 

s,e 

∣∣}, b ∈ [ s, e ) , (10) 

nd we set ˜ b := argmax 
b∈ R 1 

˜ U 

b,L ∞ 

1 ,λT 
. If this value exceeds a certain 

hreshold, denoted by ζ L ∞ 

T 
, then it is taken as a change-point. We 

ighlight that both ζ
L 2 
T 

and ζ L ∞ 

T 
are of the form C 

√ 

log T , where 

is a positive constant, with its choice discussed in Section 3.1 . 

n the Gaussian case, 
√ 

log T is the order of the threshold used in 

rder to prove consistency (with respect to the estimated number 

nd location of the change-points) results; more information can 

e found in Anastasiou and Fryzlewicz (2021) . In this paper, our 

nterest is in the actual numerical value of the threshold rather 

han in the theoretical order of its magnitude. Therefore, from now 

n, the 
√ 

log T order is used, but it is calibrated through the con- 

tant, in order to optimise the performance of CCID in the specific 

pplied framework described in this paper, which, is not of asymp- 

otic interest. 
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Fig. 1. An example of how the segmentation method in CCID works ( Anastasiou and Fryzlewicz, 2021 ). 
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A key ingredient of our CCID method is that, due to the ag- 

regation of the (scaled) CUSUM statistics, the algorithm automati- 

ally identifies common change-points, rather than estimating sin- 

le change-points at different locations in different components 

f the time series. This characteristic removes the need for post- 

rocessing across the d-dimensional sequence. 

.6. Matching the change-points to the relevant time series 

We now explain how CCID can provide information on which 

rain region data sequence(s) each change-point arises from. The 

rocedure to achieve this, is divided into two steps: firstly, esti- 

ate the change-points using CCID explained in Section 2.5 , and 

econdly follow a post-processing approach, which is applied to 

ach one of the d univariate data sequences in order to match the 

etected change-points (obtained from the first step) with the rel- 

vant data sequences. We highlight that the post-processing car- 

ied out in this section is completely different to the postprocess- 

ng carried out in Section 2.5 above. Specifically, we begin by es- 

imating the number and the location of the change-points using 

ither the L 2 or the L ∞ 

approach. The estimated change-points are 

hen sorted in an increasing order in the set 

ˆ 
 = 

{
ˆ r 1 , ̂  r 2 , . . . , ̂  r ˆ N 

}
, (11) 

here ˆ N is the number of the estimated change-points. For ˆ r 0 = 

 , ̂  r ˆ N +1 
= T , and 

˜ Y b, (k ) 
s,e in (8) , we then proceed, for each univariate

ata sequence Y (k ) 
t,T 

as in (7) , with the calculation of the quantities 

˜ 
 

ˆ r j , (k ) 

ˆ r j−1 +1 , ̂ r j+1 
, ∀ j ∈ 

{
1 , 2 , . . . , ˆ N 

}
, ∀ k ∈ { 1 , 2 , . . . , d } , (12) 

s defined in (8) . Let us now denote by S (k ) the set of estimated

hange-points that appear in the k th data sequence; as a note, 

eep in mind that, for any k ∈ { 1 , 2 , . . . , d } , S (k ) is a subset of R̂

n (11) . Since we now work in a univariate setting, checking all 

ata sequences independently in order to match them with the ob- 

ained change-points, the values obtained in (12) are compared to 

 threshold value ζ ∗
T . If, for example, ˜ Y 

ˆ r j , (k ) 

ˆ r j−1 +1 , ̂ r j+1 
> ζ ∗

T , then it is de- 

uced that the detected change-point ˆ r j appears in the k th data se- 

uence. The threshold in this univariate setting is taken to be equal 

o C 
√ 

log T . At the beginning of our approach the sets S (k ) , k =
 , 2 , . . . , d are empty. For each k ∈ { 1 , 2 , . . . , d } , if ˜ Y 

ˆ r j , (k ) 

ˆ r j−1 +1 , ̂ r j+1 
> ζ ∗

T ,

hen the estimated change-point ˆ r j is added to the set S (k ) . We 

omplete this for all ˆ r j and for all the d data sequences, so that 

e operate on the same set of change-points, ˆ R , for each data 
5 
equence. Hence, the collection 

{
S (k ) 
}

k =1 , 2 , ... ,d 
provides the infor- 

ation on which cross periodogram (and hence the pairwise rela- 

ionships between brain regions at given scales of resolution) each 

hange-point arises from. Our R package ccid also has a function 

hat associates the detected change-points with the respective data 

equence (or sequences) from which it was detected, but only for 

he threshold approach. 

We now provide more details on the threshold constant C used 

n the post-processing procedure described in the previous para- 

raph. The threshold ζ ∗
T is of the same order as the threshold used 

or univariate change-point detection in a series of papers, such as 

nastasiou and Fryzlewicz (2021) and Fryzlewicz (2014) . We note 

hat C = 

√ 

2 has been used in the aforementioned papers. More 

pecifically, in Anastasiou and Fryzlewicz (2021) it was proved that 

or i.i.d. Gaussian noise and while T → ∞ , the probability of a 

alse detection when the null hypothesis of no change-point is sat- 

sfied goes to zero when C = 

√ 

3 . This means that, for our set- 

ing, it is sensible to take C ≤ √ 

3 . In finite sample size simula- 

ions, Fang et al. (2020) showed that for the method in Fryzlewicz 

2014) , under the Gaussian i.i.d. setting, when the sample size is 

qual to T = 500 and the threshold ζ ∗
T 

= 4 . 62 (which in our set-

ing means C ≈ 1 . 853 ), then the results are very good only un-

er the null model of no change-points, where the false positive 

ate is approximately 0.05. In the cases where there exist three, 

ve, and eight change-points then the correct detection percentage 

ith the aforementioned threshold is 82% , 64 . 3% , and 34 . 4% , re-

pectively, which for the last two cases is especially low, meaning 

hat a lower threshold is more suitable for data sets with multiple 

hange-points. For CCID, we take C = 1 . 05 ×
√ 

2 , which is slightly 

igher than the proposed value of 
√ 

2 in Anastasiou and Fryzlewicz 

2021) and Fryzlewicz (2014) , while still lower than the aforemen- 

ioned upper bound value of 
√ 

3 . We note that this threshold is 

sed as a post-processing tool when change-points have already 

een detected by CCID. Therefore, we are more interested in main- 

aining a good detection power when we have multiple change- 

oints rather than having a low false positive rate in the case of 

o change-point; the latter is already controlled in the main algo- 

ithm. 

.7. The model selection approach 

An alternative approach to the L 2 and L ∞ 

threshold methods is 

ased on the optimization of a model selection criterion. In this 

etup, CCID begins by (hopefully) overestimating the number of 

hange-points by choosing a suboptimal (lower) threshold value 

n the L or the L ∞ 

methods explained in Section 2.5 . The esti-
2 
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ated change-points are sorted in an increasing order in the set 
˜ 
 = 

{
˜ r 1 , ̃  r 2 , . . . , ̃  r ˜ N 

}
, for ˜ N ≥ N (the estimated number of change- 

oints is greater than the true number of change-points). The next 

tep is to run a change-point removal process using a joint ap- 

roach for the d data sequences. For ˜ r 0 = 0 and ˜ r ˜ N +1 = T , we col-

ect the triplets 
(

˜ r j−1 , ̃  r j , ̃  r j+1 

)
and calculate 

S ∗( ̃ r j ) := max 
k =1 , 2 , ... ,d 

{ 
˜ Y 

˜ r j , (k ) 

˜ r j−1 +1 , ̃ r j+1 

} 
. (13) 

e then define m = argmin j 

{
CS ∗( ̃ r j ) 

}
, meaning that the estima- 

ion ˜ r m 

is the detected change-point which has the lowest (scaled) 

USUM statistic value in (13) ; ˜ r m 

is labelled the least important 

etection in the set ˜ S . This change-point is removed from the set, 

educing ˜ N by 1. We relabel the remaining estimates (in increas- 

ng order) in 

˜ S , and repeat this estimate removal process until S̃ 

ecomes the empty set. After this, the vector 

 = 

(
b 1 , b 2 , . . . , b ˜ N 

)
, (14) 

epresents the collection of estimates where b ˜ N is the estimate that 

as first removed from 

˜ S , b ˜ N −1 is the estimate that was removed 

ext, and so on. The vector b is called the solution path and we 

efine the collection of models 
{
M j 

}
j=0 , 1 , ... , ̃ N 

where M 0 = ∅ and 

 j = 

{
b 1 , b 2 , . . . , b j 

}
. 

A key element in the construction of the information criterion 

s the likelihood function for our data. Due to the unknown depen- 

ence structure in our data, we work instead on an approximation 

f the likelihood, where the data are taken to be independent (see 

ections 4.1 and 5.1 for a discussion on deviations from indepen- 

ence); this, from now on, is called the pseudo-likelihood, denoted 

y ˜ L (·; ·) , with its logarithm being ˜ � (·; ·) . For fixed k ∈ { 1 , 2 , . . . , d } ,
f there are no change-points in the data sequence 

{ 
Y (k ) 

t 

} 
t=1 , 2 , ... ,T 

nd Y (k ) 
1 

, Y (k ) 
2 

, . . . , Y (k ) 
T 

are independent random variables, then as 

 

(k ) 
t follows the scaled χ2 

1 
distribution with mean σ (k ) , we have 

hat 

˜ 
 (σ (k ) ; y (k) ) = 

T ∏ 

t=1 

f 
(
y (k ) 

t | σ (k ) 
)

= 

T ∏ 

t=1 

exp 

{ 
− y (k ) 

t 

2 σ (k ) 

} 
√ 

2 πσ (k ) y (k ) 
t 

, (15) 

here y (k ) 
t is the given k th data sequence. Therefore, 

˜ 
 

(
σ (k ) ; y (k) 

)
= 

T ∑ 

t=1 

{
−1 

2 

log 2 πσ (k ) − 1 

2 

log y (k ) 
t − y (k ) 

t 

2 σ (k ) 

}
= −T 

2 

log 2 πσ (k ) − 1 

2 

T ∑ 

t=1 

log y (k ) 
t − 1 

2 σ (k ) 

T ∑ 

t=1 

y (k ) 
t . 

(16) 

sing the maximum likelihood estimation method, based on (16) , 

he estimator for the parameter σ (k ) is 

ˆ (k ) = 

1 

T 

T ∑ 

t=1 

Y (k ) 
t . (17) 

n the situation that we have J change-points at locations 

 1 , r 2 , . . . , r J , then using (16) and (17) , the pseudo-log-likelihood for

he multivariate data sequence becomes 

 j ( σ; y ) = 

d ∑ 

k =1 

J+1 ∑ 

j=1 

˜ � j 
(
σ j, (k ) ; y (k) 

)
, (18) 

here σ j, (k ) is the mean of the k th data sequence in the seg- 

ent [ r j−1 + 1 , r j ] and 

˜ � j 

(
σ j, (k ) ; y (k) 

)
is the pseudo-log-likelihood 

n (16) for the aforementioned segment, where r 0 = 0 and r J+1 = T .
6 
herefore, from (16) , we have that 

 j ( σ; y ) = 

d ∑ 

k =1 

J+1 ∑ 

j=1 

{ 

− r j − r j−1 

2 

log 2 πσ j, (k ) − 1 

2 

r j ∑ 

t= r j−1 +1 

log y (k ) 
t 

− 1 

2 σ j, (k ) 

r j ∑ 

t= r j−1 +1 

y (k ) 
t 

} 

. (19) 

mong the collection of models 
{
M j 

}
j=0 , 1 , ... , ̃ N 

, we propose to se- 

ect the model that minimizes the following selection criterion 

C ( j) = −R j 

(
ˆ σ j ; y 

)
+ p T = 

1 

2 

d ∑ 

k =1 

{ 

T ∑ 

t=1 

(
log 
(
2 π ˆ σ (k ) 

t, j 
y (k ) 

t 

))
+ 

T ∑ 

t=1 

y (k ) 
t 

ˆ σ (k ) 
t, j 

} 

+ p T , (20) 

here p T is an appropriately chosen penalty function which goes 

o infinity with T . For the definition of ˆ σ (k ) 
t, j 

, we denote for j =
 , . . . , ˜ N , 

 

( j) 
1 

< . . . < m 

( j) 
j 

, (21) 

o be the sorted elements of M j = 

{
b 1 , b 2 , . . . , b j 

}
. For example if 

j = 2 and b 2 < b 1 , we have that m 

(2) 
1 

= b 2 and m 

(2) 
2 

= b 1 ; where b 1 
nd b 2 are the first two elements of the solution path as in (14) .

hen, for i = 0 , 1 , . . . , j, 

ˆ (k ) 
t, j 

= 

1 

m 

( j) 
i +1 

− m 

( j) 
i 

m 

( j) 
i +1 ∑ 

t= m 

( j) 
i 

+1 

y (k ) 
t , m 

( j) 
i 

+ 1 ≤ t ≤ m 

( j) 
i +1 

, (22) 

or m 

( j) 
i 

, i ∈ { 1 , 2 , . . . , j } as in (21) and m 

( j) 
0 

= 0 , m 

( j) 
j+1 

= T ; basi-

ally ˆ σ (k ) 
t, j 

, t = 1 , 2 , . . . , T is the estimated piecewise-constant sig-

al for the k th data sequence when the detected change-points are 

 1 , b 2 , . . . , b j . For the choice of p T , see Section 3 . 

.8. Estimating brain networks 

One of the main advantages of CCID over existing change-point 

ethods is that CCID can detect change-points that are close to 

ne another. In some cases, the number of change-points itself 

ould be the objective of the study. However, in other cases, re- 

earchers often would like to estimate a partition-specific brain 

etwork or the undirected graph between each pair of detected 

hange-points. This helps visualize the FC network in a more pre- 

ise fashion. Estimating an undirected graph for a partition with a 

mall number of data points and a large number of brain regions 

 p >> T ) is difficult, especially in the case when δ (the minimum 

istance between change-points) is small (see Tables 9 and 10 in 

he Appendix). Nonetheless, CCID can be provided with a mini- 

um distance between change-points as an input and it can post- 

rocess the change-points to fit this criterion. If we let the full ex- 

erimental time course be divided into subintervals separated by 

he detected change-points ˆ r 1 , ̂  r 2 , . . . , ̂  r ˆ N 
then for each subinterval 

 ̂ r j , ̂  r j+1 ) , we can then estimate a sparse precision matrix to rep- 

esent the FC brain network ( Cribben and Fiecas, 2016 ) for each 

artition using the following log-likelihood with a SCAD penalty 

 Fan and Li, 2001 ) on the elements of the precision matrix (inverse

ovariance matrix) 

ax 


log det  − tr (S ) −
P ∑ 

i =1 

P ∑ 

j=1 

SCAD ρ,a 

(| ω i j | 
)
, (23) 

here  is the precision matrix, S is the sample covariance 

atrix, ρi j (= ρ for convenience) is the penalty function on the 
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lements of , ω i j , and w i j is the adaptive weight function. 

an and Li (2001) defined the adaptive weights to be 

 i j = 1 / | ̃  ω i j | γ (24) 

or tuning parameter γ > 0 , where ˜ ω i j is the (i, j) th entry for

ny consistent estimate ˜  = ( ̃  ω i j ) 1 ≤i, j≤P . Mathematically, the SCAD 

enalty is symmetric and a quadratic spline on [0 , ∞ ) , whose first

rder derivative is 

CAD 

′ 
ρ,a (x ) = ρ

(
I ( | x | ≤ ρ) + 

( aρ − | x | ) + 
( a − 1 ) ρ

I ( | x | > ρ) 

)
, (25) 

or x ≥ 0 , where I is an indicator function, with ρ > 0 and a > 2

eing two tuning parameters. Zhu and Cribben (2018) discuss the 

ptimal choice for the tuning parameters in SCAD, and find that 

he best method for estimating sparse brain networks is SCAD in 

ombination with the Bayesian Information Criterion. 

. Data 

.1. Simulation study setup 

In this section we examine the performance of CCID through 

arious simulations. For each simulation setting, we perform 100 

epetitions, provide a diagram to illustrate how the second order 

tructure (or FC network structure) changes over time and a quan- 

ified description of the results. 

For CCID, we provide results for both the L 2 and the L ∞ 

ap- 

roaches as described in Section 2.5 and the results for the in- 

ormation criterion discussed in Section 2.7 . For the threshold, we 

hose the constant c 1 = 0 . 65 for the L 2 approach and the constant

 2 = 2 . 25 for the L ∞ 

approach as they provided a balance between

pecificity and sensitivity in all signals examined in a large scale 

imulation study; we highlight that the results presented in this 

aper are only a fraction of the various signals used in order to 

etermine the value of the constants c 1 and c 2 . It is important that

CID remains robust to alternative choices to this parameter and 

he practitioner has the option to obtain more change-points by 

ecreasing this threshold value. We only present the results for the 

nest scale of −1 used in the wavelet transformation as fMRI data 

ypically only have lag 1 autocorrelation ( Fiecas et al., 2017 ). With 

egards to the information criterion model selection method, we 

efine the penalty function by 

p T = 

1 

2 

(n j ) d( log T ) α, (26) 

here n j is the total number of estimated parameters related 

o the model M j , d ( = p(p + 1) / 2 ) is the dimensionality of the

avelet-transformed data sequences (the periodograms/cross pe- 

iodograms), T is the number of time points in each data se- 

uence, and α > 0 . We assume that n j manages to capture the 

omplexity of the model under investigation. In (26) , we propose 

 penalty function that is a function of the dimension of the pe- 

iodograms and cross-periodograms, d. However, we should high- 

ight that Zou et al. (2014) introduced a form of the Schwarz’s In- 

ormation Criterion similar to (20) and they used a penalty of the 

orm p T = 

1 
2 (n j )( log T ) 2+ ε , where ε > 0 , and in practice ε = 0 . 1 .

hrough the empirical work in this paper, where the length, T , 

f the data sequences is not larger than 10 0 0 observations, we 

nd that the penalty suggested by Zou et al. (2014) gives rise to 

oo many false positive change-point detections. This is expected 

ecause the penalty used in Zou et al. (2014) does not depend 

n the dimensionality d of the time series, which can be quite 

arge. A comparison of the two penalties is given through simu- 

ated data and it is available from Github at https://github.com/ 

nastasiou-andreas/ccid . For both the simulated and fMRI data sets 

esults that follow, we choose α = 0 . 1 , which has been selected by
7 
onsidering many types of simulations involving a wide range of 

ignals. The different structures used, consisted of general changes 

n the correlation/network structure, changes in the clustering (or 

ommunity structure) and changes in the degree of a network, as 

ell as no changes at all. 

We compare CCID to three other competitor methods: Sparsi- 

ed Binary Segmentation (SBS: Cho and Fryzlewicz, 2015 ) which is 

vailable through the hdbinseg R package, Factor ( Barigozzi et al., 

018 ) which is available through the factorcpt R package, and the 

ethod developed in Barnett and Onnela (2016) , which we denote 

y BO. There is no software available for BO, which is also the case 

or the majority of the methods mentioned in the introduction. 

owever, for the BO approach, code was provided to us by the au- 

hors, which we had to adjust through a function that has already 

een written for the simulations carried out in Ofori-Boateng et al. 

2020) . For SBS, we only present the results for the finer scale of 

1 used in the wavelet transformation. The Factor approach per- 

orms multiple change-point detection under factor modelling. The 

hange-points are in the second order structure of both the com- 

on and idiosyncratic components. The main function in the R 

ackage factorcpt returns change-point estimates from the com- 

on and idiosyncratic components separately, and in our results 

e present both. The notation used for these is Factor com and 

actor id , respectively. 

.2. Description of the settings 

We now describe the simulations. The objective of the simula- 

ion study is to mimic the properties of fMRI data under various 

ettings. While the data are simulated using various models, we 

isplay the dependence between the time series using an undi- 

ected graph (or network, which we use interchangeably) structure. 

 graph consists of a set of vertices V and corresponding edges E

hat connect pairs of vertices. Here each vertex represents a time 

eries, or ROI, and edges encode dependencies. In the fMRI setting, 

 missing edge indicates a lack of functional connectivity between 

orresponding regions. A graph of X can alternatively be repre- 

ented using the precision matrix (inverse covariance matrix) of 

 , with the elements of the matrix corresponding to edge weights. 

ere a missing edge between two vertices in the graph indicates 

onditional independence between the variables, giving rise to a 

ero element in the precision matrix. 

• In Simulation 1, there are no true change-points. The data are 

simulated from a vector autoregression (VAR) model with T = 

300 and p = 15 . A VAR(1), a vector autoregression of order 1, 

is given by X t = �X t−1 + εt , t = 2 , . . . , T , where � is an ( p × p)

coeffcient matrix and εt is an unobservable mean zero white 

noise vector process with time invariant covariance matrix. The 

VAR model is used to reconstruct the linear interdependency 

element prevalent among multivariate time series applications 

such as fMRI data ( Cribben et al., 2012; Xu et al., 2020 ). For a

visual display of the network structure, see Fig. 2 A. 
• In Simulation 2, we consider a change in the network edge de- 

gree with T = 200 and p = 40 . The change-point occurs in the

middle of the time series with the edge degree changing from 

η = 0 . 95 to η = 0 . 05 before and after the change-point, respec-

tively, where η represents the probability of a non-zero con- 

nection. The non-zero edges do not have the same strength. 

For a visual display of the change in the network structure, see 

Fig. 2 B. The simulation may appear quite easy (moving from 

a very dense graph to a very sparse graph), however, as the 

strength of the connections in both partitions are very small 

( ≤ 0 . 1 ) the simulation in fact is more difficult than it appears. 
• In Simulation 3, the data are simulated from a VAR model with 

T = 500 and p = 15 . There are four true change-points and they

https://github.com/anastasiou-andreas/ccid
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Fig. 2. (A) The network structure for the VAR data set with no change-points (Sim- 

ulation 1) and (B) The network structure for the change in the network degree with 

one change-point (Simulation 2). The ROI time series are represented by nodes, 

black edges infer positive connectivity, and the strength of connection between the 

ROIs is directly related to the thickness of the edges, that is, the thicker the edge 

the stronger the connection. 
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are located at equal intervals across the whole time line. For 

a visual display of the changes in the network structure, see 

Fig. 3 A. 
• In Simulation 4, the data are simulated from a VAR model with 

T = 600 and p = 10 . There are seven true change-points and

they are located at equal intervals across the whole time line. 

For a visual display of the changes in the network structure, see 

Fig. 4 A. 
• In Simulation 5, the data are simulated from a VAR model with 

T = 500 and p = 15 . There are four true change-points and they

are located at equal intervals across the whole time line. This 

simulation has an ABABA structure. For a visual display of the 

changes in the network structure, see Fig. 3 B. 
• In Simulation 6, there are seven true change-points and they 

are located at equal intervals across the whole time line. The 

data are simulated from a VAR model with T = 600 and p = 10 .

This simulation has an ABABABAB structure. For a visual display 

of the changes in the network structure, see Fig. 4 B. 
ig. 3. (A) The network structure for the VAR data set with four change-points (Simulati

Simulation 5). The ROI time series are represented by nodes, black edges infer positive c

o the thickness of the edges, that is, the thicker the edge the stronger the connection. 

8 
• In Simulation 7, we again consider a change in the network 

edge degree, however, in this simulation, there are seven true 

change-points. The change-points are located at equal intervals 

across the whole time line with T = 600 and p = 40 , and the

edge degree changing from η = 0 . 95 to η = 0 . 05 before and af-

ter the change-point. This simulation has an ABABABAB struc- 

ture. For a visual display of the change in the network struc- 

ture, see Fig. 5 A. 
• In Simulation 8, we consider a change in the network cluster- 

ing (or community structure). There are again 7 change-points 

and they are located at equal intervals across the whole time 

line with T = 600 and p = 30 . In the even time segments, the

true number of communities K o = 2 , that is, there are two clus- 

ters, with the within cluster correlation equal to 0.8 and the be- 

tween cluster correlation equal to 0. In the odd time segments, 

the true number of communities K o = 6 with the within clus- 

ter correlation equal to 0.75 and the between cluster correla- 

tion equal to 0.2 ( Cribben and Yu, 2017 ). This simulation has an

ABABABAB structure. For a visual display of the change in the 

network structure, see Fig. 5 B. 
• In Simulation 9, we consider a change in the network clus- 

tering (or community structure). It has exactly the same 

setup as Simulation 8 except the change-points are irreg- 

ularly spaced with change points occurring at time points 

100 , 175 , 275 , 300 , 400 , 475 , 575 . 
• In Simulation 10, we consider a change in the network clus- 

tering (or community structure). There are 3 change-points and 

they are located at time points 100 , 175 , 275 , with T = 300 and

p = 100 . In the even time segments, the true number of com- 

munities K o = 2 , that is, there are two clusters, with the within

cluster correlation equal to 0.8 and the between cluster cor- 

relation equal to 0. In the odd time segments, the true num- 

ber of communities K o = 20 with the within cluster correlation 

equal to 0.75 and the between cluster correlation equal to 0.2 

( Cribben and Yu, 2017 ). This simulation has an ABAB structure 

and is a high dimension data example. For a visual display of 

the change in the network structure, see Fig. 6 . 

Simulation 1 is similar to a steady state fMRI time series, where 

he network structure does not change over time. Simulations 5 

10 cover the situation where the subject alternates between 2 

tates (ABABA, ABABABAB and ABAB structures) and are similar to 

asked based fMRI data sets. We hypothesize that our new method 

CID will perform particularly well in these scenarios. This is due 
on 3) and (B) The network structure for the VAR data set with four change-points 

onnectivity, and the strength of connection between the regions is directly related 
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Fig. 4. (A) The network structure for the VAR data set with seven change-points (Simulation 4) and (B) The network structure for the VAR data set with seven change-points 

(Simulation 6). The ROI time series are represented by nodes, black (red) edges infer positive (negative) connectivity, and the strength of connection between the regions is 

directly related to the thickness of the edges, that is, the thicker the edge the stronger the connection. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 5. (A) The change in degree data set with seven change-points (Simulation 7). The ROI time series are represented by nodes, black edges infer positive connectivity, and 

the strength of connection between the regions is directly related to the thickness of the edges, that is, the thicker the edge the stronger the connection. (B) The change 

in clustering network structure with seven change-points (Simulation 8). In the even time segments, the true number of clusters is K o = 2 (cluster membership is based on 

node color) within the within cluster correlation equal to 0.8 and the between cluster correlation equal to 0. In the odd time segments, the true number of clusters is K o = 6 

(cluster membership is based on node color) within the within cluster correlation equal to 0.75 and the between cluster correlation equal to 0.2. 

Fig. 6. The change in clustering network structure with three change-points (Simulation 10). In the even time segments, the true number of clusters is K o = 20 (cluster 

membership is based on node color) with the within cluster correlation equal to 0.8 and the between cluster correlation equal to 0. In the odd time segments, the true 

number of clusters is K o = 2 (cluster membership is based on node color) with the within cluster correlation equal to 0.75 and the between cluster correlation equal to 0.2. 
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another. 
o CCIDs ability to isolate the change-points between tasks within 

ubintervals and then to detect them with those subintervals. This 

s in contrast to the popular binary segmentation (BS) method 

hich has been the only method applied on fMRI data. BS searches 

he entire time course for one change-point. Once a change-point 

s found, the data is split into two subsegments (hence, the term 

inary). A similar search is performed on each subsegment, possi- 

ly giving rise to further change-points. BS is a greedy algorithm 

s it is performed sequentially with each stage depending on the 
9 
revious ones, which are never re-visited. Hence, BS looks to parti- 

ion the experimental time course into two intervals which is diffi- 

ult given the similarity between any two intervals for this partic- 

lar data type. In other words, for any time points in an ABABA 

xperimental structure, the before and after structures are very 

imilar to the average of the A and B network structures, thus 

aking change-points difficult to identify. However, CCID has the 

bility to find multiple change-points that are very close to one 
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.3. Accuracy metrics 

In the simulations, we compare the accuracy of the differ- 

nt methods using the frequency distribution of ˆ N − N, that is, 

he difference between the number of detected change-points and 

he number of true change-points. If ˆ N − N > 0 , it indicates that 

he method finds too many false positive change-points, while if 
ˆ 
 − N < 0 , the method does not find all the true change-points. 

ˆ 
 − N = 0 is ideal. 

As a measure of the accuracy of the detected locations in time 

f the detected change-points compared to the location of the true 

hange-points, we also provide the scaled Hausdorff distance, 

 H = n 

−1 
s max 

{
max 

j 
min 

k 

∣∣r j − ˆ r k 
∣∣, max 

k 
min 

j 

∣∣r j − ˆ r k 
∣∣}, 

here n s is the length of the largest segment, ˆ r k are the esti- 

ated change-points and r j are the true change-points. The opti- 

al model obtains a minimum scaled Hausdorff distance. The av- 

rage computational time for all methods is also provided. 

.4. Task based fmri data set 

The data was taken from an anxiety-inducing experiment 

 Wager et al., 2009 ). The task was a variant of a well-studied lab-

ratory paradigm for eliciting social threat, in which participants 

ust give a speech under evaluative pressure. The design was an 

ff-on-off design, with an anxiety-provoking speech preparation 

ask occurring between lower anxiety resting periods. Participants 

ere informed that they were to be given 2 min to prepare a 7 

in speech, and that the topic would be revealed to them dur- 

ng scanning. They were told that after the scanning session they 

ould deliver the speech to a panel of expert judges, though there 

as “small chance” they would be randomly selected not to give 

he speech. After the start of fMRI acquisition, participants viewed 

 fixation cross for 2 min (resting baseline). At the end of this 

eriod, participants viewed an instruction slide for 15 s that de- 

cribed the speech topic, which was “why you are a good friend”. 

he slide instructed participants to be sure to prepare enough for 

he entire 7 min period. After 2 min of silent preparation, another 

nstruction screen appeared (a relief instruction, 15 s duration) that 

nformed participants that they would not have to give the speech. 

n additional 2 min period of resting baseline completed the func- 

ional run. 

Social threat is a cause of mental stress that generates phys- 

ological responses in the body ( Rozanski et al., 1988 ). However, 

he connection between the human brain processes and the pe- 

ipheral physiology while under stress of social threat is poorly 

nderstood. The objective of the study was to assess functional 

onnectivity elicited by public speech preparation (SET) and its re- 

ationship with heart rate. Previous human neuroimaging studies 

 Critchley et al., 20 0 0; Gianaros et al., 2004 ) indicated that the

ost likely areas for brain generators of cardiovascaular and other 

eripheral physiology responses to social evaluative threat are in 

he medial prefrontal cortex (MPFC), which projects to a set of cor- 

ical regions including the striatum. However, given MPFC’s hetero- 

eneity, it may contain subregions with diverse relationships with 

egulation. In addition, animal studies implicated the ventromedial 

refrontal cortex ( Amat et al., 2005; 2008 ). 

Functional blood-oxygen-level-dependent (BOLD) images were 

cquired with a T2 ∗-sensitive spiral in-out sequence (TR (repetition 

ime) = 20 0 0 ms, TE (echo time) = 40 ms, flip angle = 90 ◦, 24

lices in ascending sequential sequence, 4 . 5 × 3 . 4375 × 3 . 475 mm

oxels). An LCD projector displayed stimuli on a back-projection 

creen placed in the scanner room. Functional images were sub- 

ected to a standard preprocessing sequence. Slice-timing acquisi- 

ion correction using sync interpolation was performed using cus- 
10 
om software, and realignment of the functional images to correct 

or head movement was performed using the Automated Image 

egistration tools ( Woods et al., 1998 ). For details on the remaining 

reprocessing steps see Wager et al. (2009) . 

During the course of the experiment a series of 215 images 

ere acquired (TR = 2 s). In order to create ROIs, the voxel time 

eries were averaged across the entire regions. The data consists of 

 ROIs and heart rate for n = 23 subjects. The heart rate data was

ollected continuously during scanning using a photoplethysmo- 

raph on the left index finger (100 Hz sampling). Using customized 

oftware from the James Long Company, outliers were first identi- 

ed and removed from the data (using a custom algorithm blind to 

ask condition). Inter-beat intervals were then calculated from the 

emaining R-waves, and HR was averaged into 2 s bins (the scan 

epetition time, TR). For more details, see Wager et al. (2009) . The 

emporal resolution of the heart rate was 1 s compared to 2 s for 

he fMRI data. Hence, the heart rate was down-sampled by taking 

very other measurement. 

.5. Resting state fMRI data set 

The second data set is a resting-state fMRI data set, as de- 

cribed in Habeck et al. (2012) and Cribben and Yu (2017) . Partic- 

pants ( n = 45 ) are instructed to rest in the scanner for 9.5 min-

tes, with the instruction to keep their eyes open for the du- 

ation of the scan. Functional images were acquired using a 3.0 

esla magnetic resonance scanner (Philips) using a field echo- 

lanar imaging (FE-EPI) sequence [TE/TR = 20 ms/20 0 0 ms; flip an- 

le = 72 ◦; 112 × 112 matrix; in-plane voxel size = 2.0 mm ×2.0 mm;

lice thickness = 3.0 mm (no gap); 37 transverse slices per vol- 

me]. In addition, a T1-weighted turbo field echo high resolution 

mage was also acquired [TE/TR = 2.98 ms/6.57 ms; flip angle = 

 

◦; 256 × 256 matrix; in-plane voxel size = 1.0 mm ×1.0 mm; slice 

hickness = 1.0 mm (no gap); 165 slices]. The individual time se- 

ies data were bandpass-filtered between 0.009 and 0.08 Hz, mo- 

ion corrected and co-registered to the structural data, with a sub- 

equent spatial normalization to the MNI template. The voxel time 

ourses at white-matter and CSF locations are submitted to a Prin- 

ipal Component Analysis and, together with the motion param- 

ters, we use all components with an eigenvalue strictly greater 

han 1 as independent variables in a subsequent nuisance regres- 

ion Habeck et al. (2012) . Each voxels time series is residualized 

ith respect to those independent variables. The residual time se- 

ies images are then smoothed with an isotropic Gaussian ker- 

el (FWHM = 6mm). We apply the Anatomical Automatic Label- 

ng ( Tzourio-Mazoyer et al., 2002 ) atlas to the adjusted voxel-wise 

ime series and produce time series for 31 Regions of Interest 

ROIs) for each subject by averaging the voxel time series within 

he ROIs. The 31 ROIs contain 8 regions from the attentional net- 

ork (frontal superior medial L, angular L, angular R, temporal 

iddle L, temporal mid R, thalamus L, cerebellum crus1 L, cere- 

ellum crus1 R), 2 regions from the visual network (temporal su- 

erior L, temporal superior R), 3 regions from the sensorimotor 

etwork (postcentral L, postcentral R, supplementary motor area 

), 7 regions the salience network (cingulum anterior L, frontal 

id L, frontal middle R, insula L, insula R, supramarginal L, supra- 

arginal R), 9 regions from the default mode network (precentral 

, precentral R, parietal superior L, occipital superior R, parietal in- 

erior L, parietal inferior R, temporal inferior L, temporal inferior 

, cingulum posterior L) and 2 regions from the auditory network 

calcarine L, Calcarine R). We chose these networks because an in- 

reasing number of pathologic conditions appear to be reflected in 

he functional connectivity between these particular brain regions 

nd we wanted the number of ROIs in the fMRI data to match the 

imulation settings. In total, each ROI time series is made up of 

85 time points (9.5 minutes with TR = 2). 
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Table 1 

The distribution of ˆ N − N over 100 simulated data sequences from Simulation 1 

(no change-point) for Sparsified Binary Segmentation (SBS), Factor with common 

components (Factor com), Factor with idiosyncratic components (Factor id), Barnett 

and Onnela (2016) (BO), and Cross-covariance isolate detect with the L 2 threshold 

(CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion (CCID. L 2 IC) and 

the L ∞ information criterion (CCID. L ∞ IC). The computational times for each method 

are also provided. 

ˆ N − N

Method 0 1 2 ≥ 3 Time (s) 

SBS 97 3 0 0 2.65 

Factor com 100 0 0 0 14.16 

Factor id 95 5 0 0 14.16 

BO 83 14 3 0 13.97 

CCID. L 2 92 6 2 0 0.25 

CCID. L ∞ 90 9 1 0 0.27 

CCID. L 2 IC 100 0 0 0 0.36 

CCID. L ∞ IC 100 0 0 0 0.29 

Table 2 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 2 (change in network degree) for Sparsified Bi- 

nary Segmentation (SBS), Factor with common components (Factor com), Factor 

with idiosyncratic components (Factor id), Barnett and Onnela (2016) (BO), and 

Cross-covariance isolate detect with the L 2 threshold (CCID. L 2 ), the L ∞ threshold 

(CCID. L ∞ ), the L 2 information criterion (CCID. L 2 IC) and the L ∞ information criterion 

(CCID. L ∞ IC). The computational times for each method are also provided. 

ˆ N − N

Method -1 0 1 ≥ 2 d H Time (s) 

SBS 0 99 1 0 0.02 11.20 

Factor com 100 0 0 0 1 15.39 

Factor id 0 100 0 0 0.01 15.39 

BO 0 93 7 0 0.05 7.78 

CCID. L 2 5 93 0 2 0.06 1.00 

CCID. L ∞ 0 57 24 14 0.26 1.10 

CCID. L 2 IC 3 93 4 0 0.07 1.62 

CCID. L ∞ IC 3 94 3 0 0.06 2.41 
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Table 3 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 3 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 4 6 18 72 0 0 0 0.51 5.93 

Factor com 100 0 0 0 0 0 0 4 15.38 

Factor id 74 7 9 10 0 0 0 2.73 15.38 

BO 0 0 0 72 22 6 0 0.22 45.45 

CCID. L 2 0 2 37 57 4 0 0 0.46 0.42 

CCID. L ∞ 0 3 13 71 10 3 1 0.36 0.46 

CCID. L 2 IC 1 2 10 80 6 1 0 0.27 0.82 

CCID. L ∞ IC 9 7 7 72 5 0 0 0.66 0.63 

Table 4 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 4 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 49 28 21 2 0 0 0 1.66 4.27 

Factor com 100 0 0 0 0 0 0 7 16.12 

Factor id 100 0 0 0 0 0 0 5.03 16.12 

BO 0 0 1 43 34 16 6 0.30 95.80 

CCID. L 2 0 0 1 52 39 7 1 0.24 0.21 

CCID. L ∞ 12 10 27 36 13 1 1 0.94 0.27 

CCID. L 2 IC 0 1 9 71 14 3 2 0.26 0.92 

CCID. L ∞ IC 4 14 23 54 5 0 0 0.65 0.47 
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. Results 

.1. Simulation study 

In this section, we present the simulation and fMRI results. 

able 1 shows the results over 100 iterations for Simulation 

 (no change-point: see Section 3.2 ). SBS ( Section 3.1 ), Factor 

 Section 3.1 ), and our method, CCID (across both thresholds and 

nformation criteria), perform very well and correctly do not de- 

ect change-points across almost all iterations. BO has the worst 

erformance in terms of Type I error. CCID is at least an order of 

agnitude computationally faster than all competing methods, a 

attern which is also evident for the rest of the simulations. 

Table 2 shows the results over 100 iterations for Simulation 2 

change in network degree, see Section 3.2 ). As mentioned previ- 

usly, this simulation is more difficult than it appears. SBS, Factor 

ith idiosyncratic components (Factor id), BO and CCID (except for 

CID. L ∞ 

) perform very well and correctly identify the change-point 

n the vast majority of the 100 iterations, with Factor id perform- 

ng the best, finding one change point in all 100 iterations. On the 

ther hand, Factor with common components (Factor com) per- 

orms poorly and does not detect the change-point in any of the 

00 iterations. In terms of Hausdorff distance, Factor id performs 

he best but there is a negligible difference with SBS, BO, CCID. L 2 ,

CID. L 2 IC and CCID. L ∞ 

IC. 

For Simulation 3 (see Section 3.2 ), SBS, BO and CCID (using the 

hresholding and information criteria) perform well with the ma- 

ority of their detected change-points within ±2 ( Table 3 ). How- 
11 
ver, CCID. L 2 IC performs the best in terms of the distribution of 
ˆ 
 − N, that is, the majority of its detected change-points equal the 

rue number of change-points across all 100 iterations, but BO has 

 slightly lower Hausdorff distance, the detected change-points are 

losest to the true change-points in terms of location. Both Factor 

om and Factor id perform poorly in this simulation. 

Simulation 4 (see Section 3.2 ) contains 7 change-points with 

CID (across both thresholds and information criteria) outperform- 

ng SBS and Factor in terms of detection and having the smallest 

ausdorff distances ( Table 4 ). However, BO also performs well and 

as the third best Hausdorff distance after CCID. L 2 and CCID. L 2 IC. 

CID. L 2 IC performs the best while SBS is able to detect some 

hange points, however, Factor performs poorly in this simulation 

ith large negative values for ˆ N − N and large Hausdorff distance 

alues. BO is particularly slow in this simulation. 

Simulations 1–4 show that CCID performs as well (and in most 

ases better than) the competing methods for the general settings. 

e now consider Simulations 5–8 which cover the situation where 

he subject changes between 2 states (ABABA and ABABABA struc- 

ures) and mimic a tasked based fMRI experiment. This is a gen- 

ralization of the epidemic change alternative ( Kirch et al., 2015 ), 

hange where change-point r 1 corresponds to the time when a 

rocess 
∏ 

1 is turned off (equivalently, when another process 
∏ 

2 

s activated) and change-point r 2 corresponds to the time 
∏ 

2 is 

urned off, thus returning to 
∏ 

1 . As we have stated before, we 

ypothesize that our new method, CCID, will perform particularly 

ell in these scenarios. This is due to CCIDs ability to isolate the 

hange-points between tasks within subintervals and then to de- 
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Table 5 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 5 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 71 26 1 2 0 0 0 3.24 4.45 

Factor com 100 0 0 0 0 0 0 4 15.23 

Factor id 7 17 0 76 0 0 0 0.63 15.23 

BO 6 25 1 30 29 9 0 0.87 33.65 

CCID. L 2 0 1 4 91 4 0 0 0.13 0.44 

CCID. L ∞ 2 8 13 59 16 2 0 0.60 0.53 

CCID. L 2 IC 24 15 0 61 0 0 0 1.24 0.81 

CCID. L ∞ IC 47 21 1 31 0 0 0 2.25 0.66 

Table 6 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 6 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 100 0 0 0 0 0 0 6.73 2.31 

Factor com 100 0 0 0 0 0 0 7 17.14 

Factor id 100 0 0 0 0 0 0 6.72 17.14 

BO 47 13 4 10 13 8 5 2.38 53.33 

CCID. L 2 0 0 1 68 23 7 1 0.20 0.11 

CCID. L ∞ 40 26 13 17 4 0 0 1.86 0.17 

CCID. L 2 IC 9 12 2 65 12 0 0 0.75 0.46 

CCID. L ∞ IC 34 26 5 33 2 0 0 2.28 0.25 
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ect them with those subintervals. In addition, CCID has the ability 

o find change-points that are very close to one another. 

Table 5 shows the results from Simulation 5 (see Section 3.2 ), 

hich has four change-points and an ABABA network structure. 

learly CCID with both thresholds and information criteria out- 

erform SBS and Factor com in terms of estimating the correct 

umber of change points and the location of the detected change 

oints. In particular, CCID. L 2 has the best performance, correctly 

dentifying the correct number of change points in 91 out of 100 

terations and having the smallest Hausdorff distance. Furthermore, 

CID. L ∞ 

also performs well with similar but superior results to 

actor id and BO. 

Table 6 shows the results from Simulation 6 (see Section 3.2 ), 

hich has seven network change points and an ABABABAB net- 

ork structure. Again, CCID with both thresholds and informa- 

ion criteria outperforms all of SBS, Factor and BO. In particular, 

CID. L 2 has the best performance in terms of estimating the cor- 

ect number of change points and the location of the detected 

hange points. SBS and Factor perform poorly in this simulation, 

hey are unable to identify the correct number of change points in 

ll iterations. BO is able to estimate the correct number of change 

oints in 10 out of the 100 iterations but is very slow computa- 

ionally compared to all the other methods. 

Table 7 shows the results from Simulation 7 (see Section 3.2 ), 

hich has seven change points in the network degree ABABABAB 

ype structure. Similar to Simulation 2, this simulation (see Fig. 5 A) 

ay appear quite easy (alternating between a very dense graph to 

 very sparse graph), however, as the strength of the connections 
12 
n both partitions is very small ( ≤ 0 . 1 ) the simulation in fact is

ore difficult than it appears. Both SBS and Factor com struggle, 

hey are unable to identify the correct number of change points 

n all iterations. CCID with both thresholds and information cri- 

eria outperforms SBS and Factor. BO, while superior to both SBS 

nd Factor, is still inferior to CCID across both thresholds and in- 

ormation criteria. CCID. L ∞ 

IC has the best performance in terms of 

stimating the correct number of change points and the location 

f the detected change points. In all 100 iterations, it identifies the 

orrect number of true change points. However, Factor id performs 

dequately but in all iterations misses two change points. 

Table 8 shows the results from Simulation 8 (see Section 3.2 ), 

hich has seven change points in the network clustering 

BABABAB type structure. This is the most difficult simulation but, 

gain, CCID with both thresholds and information criteria outper- 

orm SBS, Factor and BO. Similar to Simulation 7, CCID. L ∞ 

IC has 

he best performance in terms of estimating the correct number of 

hange points and the location of the detected change points. SBS 

nd Factor perform poorly in this simulation, they are unable to 

dentify the correct number of change points in all iterations. BO 

as a decent performance but is outperformed by CCID across all 

hresholds and information criteria. 

Table 9 shows the results from Simulation 9 (see Section 3.2 ), 

hich has seven change points (ABABABAB) in the network clus- 

ering structure. It has the same setup as Simulation 8, but the 

rue change-points are occurring at unequally spaced time points, 

amely at time points t = 100 , 175 , 275 , 300 , 400 , 475 , 575 . CCID

ith both thresholds and information criteria outperform SBS, Fac- 

or and BO, and to a larger extent than the results for Simula- 

ion 8. Again, similar to Simulation 8, the information criteria have 

he best performance in terms of estimating the correct number 

f change points and the location of the detected change points 

smallest Hausdorff distance), with CCID.L ∞ 

IC detecting the true 

umber of change points on 89 out of 100 iterations. SBS and Fac- 

or perform poorly in this simulation, they are unable to identify 

he correct number of change points across all iterations. BO has 

 moderate performance but is outperformed by CCID across all 

hresholds and information criteria. 

Table 10 shows the results from Simulation 10 (see Section 3.2 ), 

hich has three change points in the network clustering struc- 

ure (ABAB). Here, we consider a high-dimensional time series 

 p = 100 ). CCID with both information criteria has the best perfor- 

ance, BO and CCID with both thresholds perform similarly and 

ave the next best performance, with Factor having the worst per- 

ormance (it is unable to identify the correct number of change 

oints in all iterations). BO has a moderate performance but is out- 

erformed by CCID with the information criteria. CCID.L ∞ 

IC detects 

he true number of change points on 89 out of 100 iterations. The 

omputation for CCID is an order of magnitude faster than SBS and 

wo orders of magnitudes faster than BO and Factor. Finally, it is 

mportant to point out that the true dimensionality of the problem 

s d(d + 1) / 2 , where d is the dimensionality of the initial multivari-

te time series. Hence, for given data of dimensionality p = 100 , 

he dimensionality of the problem is d = 5050 (periodograms). 

As stated at the beginning of Section 2 , CCID assumes that 

he ROI time series are Gaussian. It also assumes independence in 

he pseudo-likelihood as expressed in (15) . However, CCID is ro- 

ust under deviations from Gaussianity and/or from independence 

ithin the ROI time series. For example, Table 13 (in the Appendix) 

hows the results from applying CCID (and the competing meth- 

ds, SBS, Factor and BO) to Simulations 1, 3 and 5, where the noise 

f each ROI time series now follows the t distribution with 5 de- 

rees of freedom. While the results are inferior to the Gaussian 

ata, there is not a vast drop off in performance. The performance 

f CCID remains superior to SBS, Factor and BO in these settings. 

n situations where we suspect that our data are far from indepen- 
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Table 7 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated data sequences from Simulation 7 for Sparsified Binary 

Segmentation (SBS), Factor with common components (Factor com), Factor with idiosyncratic components (Factor id), Barnett and Onnela 

(2016) (BO), and Cross-covariance isolate detect with the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 100 0 0 0 0 0 0 4.93 30.85 

Factor com 100 0 0 0 0 0 0 7 67.02 

Factor id 0 100 0 0 0 0 0 1.22 67.02 

BO 11 5 0 73 10 1 0 0.62 115.49 

CCID. L 2 0 0 0 12 32 27 29 0.19 0.10 

CCID. L ∞ 0 0 0 0 6 8 86 0.14 0.12 

CCID. L 2 IC 0 0 0 52 26 18 4 0.18 0.54 

CCID. L ∞ IC 0 0 0 100 0 0 0 0.03 0.34 

Table 8 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 8 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 100 0 0 0 0 0 0 5.82 16.85 

Factor com 100 0 0 0 0 0 0 7 423.40 

Factor id 100 0 0 0 0 0 0 6.63 423.40 

BO 39 5 1 29 22 4 0 2.11 82.27 

CCID. L 2 0 0 0 42 28 20 10 0.27 0.82 

CCID. L ∞ 0 0 0 2 6 13 79 0.30 1.26 

CCID. L 2 IC 0 0 0 79 13 5 3 0.19 3.79 

CCID. L ∞ IC 0 0 1 94 4 1 0 0.11 3.12 

Table 9 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 9 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 100 0 0 0 0 0 0 5.21 14.11 

Factor com 100 0 0 0 0 0 0 5.64 49.32 

Factor id 100 0 0 0 0 0 0 5.75 49.32 

BO 72 18 8 2 0 0 0 3.63 68.49 

CCID. L 2 0 0 0 16 24 25 45 0.36 2.01 

CCID. L ∞ 0 0 0 2 3 11 84 0.22 2.84 

CCID. L 2 IC 1 12 0 63 13 9 2 0.29 5.48 

CCID. L ∞ IC 0 3 0 89 4 4 0 0.10 3.98 
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Table 10 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated 

data sequences from Simulation 10 for Sparsified Binary Segmentation (SBS), Fac- 

tor with common components (Factor com), Factor with idiosyncratic components 

(Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with 

the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). The computational times 

for each method are also provided. 

ˆ N − N

Method -3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS 0 0 95 5 0 0 0 1.01 81.91 

Factor com 100 0 0 0 0 0 0 2.75 568.72 

Factor id 5 0 95 0 0 0 0 1.08 568.72 

BO 19 0 3 50 25 2 1 0.67 712.49 

CCID. L 2 0 0 0 36 21 20 23 0.28 0.97 

CCID. L ∞ 0 0 0 0 1 0 99 0.57 1.38 

CCID. L 2 IC 0 0 0 73 9 8 10 0.15 3.86 

CCID. L ∞ IC 0 0 0 89 4 4 3 0.08 3.25 
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ent and Gaussian, our CCID algorithm can still be applied to the 

ata after some pre-processing takes place. More specifically, to- 

ards this purpose, the subsampling and pre-averaging techniques 

escribed in Section 5.1 are beneficial. 

In summary, for general data sets (Simulations 1–4), we found 

hat CCID performs as well as, if not better than, SBS, Factor and 

O. For simulations where the subject alternates between two 

tates (Simulations 5–10), CCID performs very well and clearly out- 

erforms SBS, Factor and BO using both thresholds and information 

riteria. Our recommendation is to use CCID with thresholding for 

eneral settings and to use the information criteria for the alter- 
13 
ating structure, although both the thresholds and the information 

riteria outperform the competing methods in this case. With re- 

pect to the computational cost, our method (any variant of it) is 

omputationally faster than any other competitor and this can be 

een in the last column of the tables. 

.2. Task based fMRI results 

We now present the results of our method, CCID, on the task 

ased fMRI data set described in Section 3.4 ; the results for SBS, 

actor and BO are in the Appendix. For this data set, we ap- 

ly CCID to each subject separately, that is, we do not align the 

hange-points in any way across the subjects. Fig. 7 shows the de- 

ected change-points for the 4 ROI and heart rate data using CCID 

ith threshold L ∞ 

(top) and information criterion L ∞ 

IC (bottom) 

sing a minimum distance between change-points of δ = 1 (left) 

nd δ = 40 (right). The blue vertical lines indicate the times of 

he showing and of the removal of the visual cues. In some ex- 

eriments, the number of change-points itself could be the objec- 

ive of the study. Hence, a minimum distance δ = 1 could be uti- 

ized. However, in other cases, researchers often would like to es- 

imate a partition specific brain network or the undirected graph 

etween each pair of detected change-points. This helps visualize 

he FC network in a more precise fashion. To this end, we used 

 minimum distance δ = 40 (however, this is at the discretion of 

he researcher). For more details on the precise location of the 

hange-points see Table 11 in the Appendix. The y-axis depicts the 

ubject number while the x-axis shows the change-point location 

imes. As we have already stated, one of the main advantages of 

CID over previous change-point methods is that CCID can detect 
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Fig. 7. The detected change-points for the 4 ROI and heart rate data using CCID with threshold L ∞ (top) and information criterion L ∞ IC (bottom) using a minimum distance 

between change-points of δ = 1 (left) and δ = 40 (right). The y-axis depicts the subject number while the x-axis shows the change-point location times. The blue vertical 

lines indicate the times of the showing and of the removal of the visual cues. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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1

hange-points that are very close to one another and is not lim- 

ted by a minimum distance between change-points input. Hence, 

CID is not only able to detect change-points that are in the neigh- 

orhood of time point 60, which corresponds directly to the pre- 

entation of the first visual cue specifying the topic of the speech 

ut also at the removal of said cue at time point 67.5 (see subjects 

, 12, 16 and 17 in the L ∞ 

with minimum distance = 1 in Fig. 7 ,

op left). Likewise for time points 130 and 137.5, the second visual 

ue stating that the participants would in fact not have to give the 

resentation to the expert panel of judges after the conclusion of 

he scanning session was revealed (see subjects 2, 10, 19 in the L ∞ 

ith minimum distance = 1 in Fig. 7 , top left). The change-points 

ccurring prior to the first visual cue may be related to anticipa- 

ion of the speech topic, while change-points occurring during cues 

ay be due to the different modes of anxiety as subjects silently 

repare their speech. Finally, change-points occurring after the sec- 

nd visual cue may be due to the different modes of rest as sub- 

ects silently come to the end of the experiment. This pattern of 

hange points is also seen for CCID with L ∞ 

( Fig. 7 , bottom left).

CID is the only existing method (to the best of our knowledge) 

apable of finding change points this close to one another. 

As mentioned above, often researchers would like to estimate a 

artition specific brain network or the undirected graph between 

ach pair of detected change-points. This helps visualize the FC 

etwork in a more precise fashion. Hence, Fig. 7 (right) shows the 

esults where a minimum distance of δ = 40 was used. In this case, 

very subject has either two or three change-points with each sub- 

ect having a change-point in the neighborhood of time point 60 

the first visual cue) and time point 130 (the second visual cue). 

In addition, Fig. 8 shows the detected change-points for the 4 

OI and heart rate data using CCID with threshold L 2 (top) and 

nformation criterion L 2 IC (bottom) using a minimum distance be- 

ween change-points of δ = 1 (left) and δ = 40 (right). All of the 

onclusions that we described above in Fig. 7 are also true for 
14 
hese methods. The only difference is that CCID with threshold L 2 
top) and information criterion L 2 IC detect more change points for 

oth δ = 1 , 40 . 

Fig. 9 shows the density plots for the detected change-points 

n the 4 ROI and heart rate data using all variants of CCID across 

ll 23 subjects using a minimum distance between change points 

f δ = 40 . Again, the blue vertical lines indicate the times of 

he showing and of the removal of the visual cues. We can see 

hat for all combinations of CCID there are clear peaks around 

ime points 60–67.5 and 130–137.5, the times of the showing and 

he removal of the visual cues. There is consistency across the 

ombinations although the thresholding provide the most distinct 

eaks. 

For comparison, Fig. 14 (in the Appendix) shows the detected 

hange-points for the 4 ROI and heart rate data using the com- 

eting methods: SBS, Factor, and BO. Here, SBS and Factor idiosyn- 

ratic find at most one change-point for each subject and in the 

ast majority of cases they find no change-point at all. To be more 

recise, SBS does not find any change-points in 18 out of 23 sub- 

ects and Factor idiosyncratic in 16 subjects. None of the detected 

hange-points by SBS are in the neighborhood of time point 60, 

hich corresponds directly to the presentation of the first visual 

ue specifying the topic of the speech and the removal of said cue 

t time point 67.5 (135 seconds). Only one change-point is near 

ime point 130 (subject 15), the second visual cue stating that the 

articipants would in fact not have to give the presentation to the 

xpert panel of judges after the conclusion of the scanning session 

as revealed. The other change-points may be due to the different 

odes of anxiety as subjects silently prepare their speech. The BO 

ethod detects two change-points in 4 subjects, one change-point 

n 5 subjects and no change-points in 14 subjects. Factor common 

etects three change-points in 1 subject, two change-points in also 

 subject, one change-point in 6 subjects and no change-points in 

5 out of 23 subjects. 
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Fig. 8. The detected change-points for the 4 ROI and heart rate data using CCID with threshold L 2 (top) and information criterion L 2 IC (bottom) using a minimum distance 

between change-points of δ = 1 (left) and δ = 40 (right). The y-axis depicts the subject number while the x-axis shows the change-point location times. The blue vertical 

lines indicate the times of the showing and of the removal of the visual cues. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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As mentioned before we reduced the number of change-points 

hat CCID detected by specifying a minimum distance between 

hange points. There are two other procedures available to CCID 

o reduce the number of detected change-points. First, the thresh- 

lds in the L ∞ 

and L 2 approaches (see Section 3.1 for a discussion) 

nd the penalties for the L ∞ 

and L 2 information criteria approaches 

an be increased. Second, CCID provides the solution path for the 

 ∞ 

and L 2 thresholding approaches, which is an ordering of the 

mportance of the detected change-points in descending order (see 

ection 2.6 for more details). Hence, a certain number of change- 

oints could be specified using this procedure. Fig. 10 shows the 

ensity plots for the detected change-points in the 4 ROI and heart 

ate data across all 23 subjects using a minimum distance between 

hange points of δ = 40 , using the solution path method for the 

 ∞ 

and L 2 thresholding approaches, where we assume two change- 

oints per channel. Both of these density plots show a good behav- 

or with a clear bimodal structure that peak close to the first and 

econd visual cues. The results from this procedure are comparable 

o the original robust choices we used in Fig. 9 . Of course, speci-

ying a certain number of change-points would benefit from input 

rom the domain knowledge experts. These procedures show the 

exibility of CCID and allows the researchers alternative strategies 

o reduce the number of detected change-points. 

The FC undirected graphs, estimated by SCAD and BIC 

 Section 2.8 ), for subjects 4, 6, 8, 9 and 11 between the detected

hange-points for CCID. L ∞ 

are displayed in Fig. 11 . Black (red) 

dges infer positive (negative) connectivity, and the strength of 

onnection between the regions is directly related to the thickness 

f the edges, that is, the thicker the edge the stronger the connec- 

ion. The connectivity structure in the undirected graphs for each 

ubject is quite different, however, the connection between the an- 

erior mPFC and VMPFC is consistent across all subjects. From the 

raphs it is also evident that HR is more connected to the other 

OIs during the resting periods, while during the second partition, 
15 
hen the speech topic is presented and the participants begin to 

ilently prepare their speech, there is less connections between HR 

nd the other ROIs. Perhaps this is due to the anticipation stage of 

he experiment being more stressful than the preparation stage. 

.3. Resting state fmri results 

Evidence of the non-stationary behavior of brain activity time 

eries has been observed not only in task based fMRI studies, but 

lso prominently in resting-state data (( Delamillieure et al., 2010; 

oucet et al., 2012; Ondrus et al., 2021; Xiong and Cribben, 2021 ). 

n these experiment mental activity is unconstrained. Fig. 12 shows 

he detected change-points for the resting state fMRI data using 

CID with threshold L ∞ 

(top) and information criterion L ∞ 

IC (bot- 

om) using a minimum distance between change-points of δ = 1 

left) and δ = 40 (right). For more details on the precise location of 

he change-points see Table 12 in the Appendix. The y-axis depicts 

he subject number while the x-axis shows the change-point loca- 

ion times. Where the minimum distance between change-points 

s not restricted, every subject has at least three change-points in 

heir second order structure structure with the maximum number 

f change-points being 30 (subject 1). The results indicate that, not 

nly does the number of second-order structure change-points dif- 

er across subjects, but the location of the change-points is also 

ariable. In addition, some subjects remain in states for short pe- 

iods whereas others transition more quickly. Hence, CCID has a 

ajor advantage over moving window-type methods as we do not 

ave to choose the window length, which can have significant con- 

equences on the estimated brain networks. As we have already 

tated for the Anxiety fMRI data, one of the main advantages of 

CID over previous change-point methods is that CCID allows for 

etection in the presence of frequent changes of possibly small 

agnitudes. Hence, for resting state data, where the subjects are 

nconstrained, CCID is very suitable. No previous method has been 
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Fig. 9. The density plots for the detected change-points in the 4 ROI and heart rate data using CCID across all 23 subjects using δ = 40 . Top row : CCID with L 2 thresholding 

(left) and CCID with L ∞ thresholding (right) Bottom row : CCID with L 2 Information-Criterion (left) and CCID with L ∞ Information-Criterion (right). 

Fig. 10. The density plots for the detected change-points in the 4 ROI and heart rate data using CCID across all 23 subjects using δ = 40 using the solution path method for 

the L ∞ and L 2 thresholding approaches, where we assume two change-points per channel. CCID with L 2 thresholding (left) and CCID with L ∞ thresholding (right) . 
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ble to detect as many change-points and also change-points that 

re very close to one another. In some studies, the number of 

hange-points itself could be the objective of the study or an in- 

ut into a model for disease classification. Hence, a small mini- 

um distance could be utilized. However, in other cases, often re- 

earchers would like to estimate a partition specific brain network 

r the undirected graph between each pair of detected change- 

oints for visualizing the FC network. Hence, Fig. 12 (right) shows 

he results where a minimum distance of δ = 40 was used. In this 

ase, every subject has up to 5 change-points with a minimum of 

 change-points. 

Fig. 13 shows the detected change-points for the resting state 

MRI data using CCID with threshold L 2 (top) and information cri- 

erion L 2 IC (bottom) using a minimum distance between change- 

oints of δ = 1 (left) and δ = 40 (right). All of the conclusions that 

e described above in Fig. 12 are similar for these methods. The 

nly difference is that CCID with threshold L 2 (top) and informa- 
16 
ion criterion L 2 IC detect less change points for both δ = 1 , 40 and

re more spread out for δ = 1 . 

For comparison, Fig. 15 (see Appendix) shows the results for all 

he competing methods for the resting state fMRI data. SBS finds 

ither one or two change-points for each subject, Factor common 

nds at most one change-point, while Factor idiosyncratic does not 

nd any change-points for all subjects. The BO method finds multi- 

le change-points for all subjects, apart from Subject 4, where this 

ethod detects one change-point. Although we are not certain of 

he number of change-points for resting state fMRI, as the subject 

s unconstrained, we expect subjects to traverse several functional 

tates across the experiment and previous studies Ofori-Boateng 

t al. (2020) have located multiple change-points, something which 

grees with the results of CCID and BO, but not with those of SBS 

nd Factor. However, due to the liberal Type I errors for BO (also 

een in Ofori-Boateng et al., 2020 ), many of BO’s change-points 

ay be due to false positive change-points. 
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Fig. 11. The four-ROI and heart rate data set (task based fMRI data set) the regions are : (1) VMPFC, (2) anterior mPFC, (3) Striatum/pallidum, and (4) DLPFC/IFJ and 5) heart 

rate (left). The FC undirected graphs, estimated by SCAD and BIC, for subjects 4, 6, 8, 9 and 11 (each row corresponds to a particular subject) between the detected change- 

points for CCID. L ∞ (right). Black (red) edges infer positive (negative) connectivity, and the strength of connection between the regions is directly related to the thickness of 

the edges, that is, the thicker the edge the stronger the connection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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. Discussion 

.1. Impact of autocorrelation 

Our CCID model first constructs appropriate wavelet-based local 

eriodogram sequences from the original multivariate time series, 

 t,T . To detect change-points, it uses a scaled CUSUM statistic on 

he transformed data. The optimization of model selection crite- 

ia provides an alternative approach to the thresholding methods 

or pruning the set of change-points, which we assume have been 

verestimated. A key element in the construction of the informa- 

ion criteria is the likelihood function for our transformed data. 

ue to the unknown dependence structure in our transformed data 

wavelet-based local periodogram sequences), the construction of 

he exact likelihood is very difficult. Hence, we work instead on 

n approximation of the likelihood, the pseudo-likelihood, where 

he data are (incorrectly) taken to be independent. This is a com- 

on approach. For example, Zhang et al. (2014) assume indepen- 

ence among the temporal segments, which is critical to the es- 

imation of the posterior distribution of their Dynamic Bayesian 
s

17 
ariable Partition models. However, in our simulations and fMRI 

ata analyses, we show that CCID with the model selection criteria 

and therefore the pseudo-likelihood) performs well for both inde- 

endent data and data with a moderate amount of autocorrelation. 

n cases where the autocorrelation in the transformed data is very 

igh, we propose the following variants of our algorithm that can 

e employed to achieve better practical performance. 

Subsampling. Suppose we have d periodograms after the 

avelet transformation is applied on the original p time series, 

hen we can subsample from the periodograms and apply CCID to 

he data sequences created. For conceptual simplicity, allow us to 

xplain this subsampling variant through an example where the 

ength of each periodogram, 

{ 
W 

(q ) 
t 

} 
t=1 , 2 , ... ,T 

for q = 1 , 2 , . . . , d, is 

 = 10 0 0 . In this example, we subsample every s = 4 data points;

f course different values of s can be taken and our specific choice 

s made only for the sake of explaining this subsampling variant. 

e note that the lower the value of s , the more autocorrelation 

n our new (subsampled) data but also the more accurate the es- 

imated change-point locations. In our example of T = 10 0 0 and 

 = 4 , the following s data sequences for each periodogram are cre- 
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Fig. 12. The detected change-points for the resting state fMRI data using CCID with threshold L ∞ (top) and information criterion L ∞ IC (bottom) using a minimum distance 

between change-points of δ = 1 (left) and δ = 40 (right). The y-axis depicts the subject number while the x-axis shows the change-point location times. 
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o

ted: 

W 

(q ) , 1 
t 

}
t=1 , 2 , ... , 250 

= 

{
W 

(q ) 
1 

, W 

(q ) 
5 

, . . . , W 

(q ) 
997 

}
W 

(q ) , 2 
t 

}
t=1 , 2 , ... , 250 

= 

{
W 

(q ) 
2 

, W 

(q ) 
6 

, . . . , W 

(q ) 
998 

}
W 

(q ) , 3 
t 

}
t=1 , 2 , ... , 250 

= 

{
W 

(q ) 
3 

, W 

(q ) 
7 

, . . . , W 

(q ) 
999 

}
W 

(q ) , 4 
t 

}
t=1 , 2 , ... , 250 

= 

{
W 

(q ) 
4 

, W 

(q ) 
8 

, . . . , W 

(q ) 
10 0 0 

}
. 

fter completing this step, we apply, for each j = 1 , 2 , 3 , 4 sepa-

ately, CCID to the multivariate time series 

 

W 

j 
t 

} 
t=1 , 2 , ... , 250 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

W 

(1) , j 
t 

W 

(2) , j 
t 

. . . 

W 

(Q ) , j 
t 

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

t=1 , 2 , ... , 250 

n order, for each j = 1 , 2 , . . . , s , to detect the change-points

or W 

j 
t ; this set of change-points is denoted by H 

( j) = 

 

ˆ r 
( j) 
1 

, ̂  r 
( j) 
2 

, . . . , ̂  r 
( j) 
N j 

} 
. We define 

 = ∪ j=1 , 2 , ... ,s H 

( j) 

= 

{
ˆ r (1) 
1 

, ̂  r (1) 
2 

, . . . , ̂  r (1) 
N 1 

, ̂  r (2) 
1 

, ̂  r (2) 
2 

, . . . , ̂  r (2) 
N 2 

, . . . , ̂  r (s ) 
1 

, ̂  r (s ) 
2 

, . . . , ̂  r (s ) 
N s 

}
. 

ome of the elements in the set H can of course be identical. 

he next step is to apply a majority voting rule, in the sense that 

e only keep those values that appear at least η times, where 

∈ { 1 , 2 , . . . , s } . The value of η can be decided upon using a pri- 

ri knowledge of the particular neuroimaging data set. Once the 

alues that appear at least η times in H are extracted, the change- 

oints are then transformed to represent the change-point loca- 

ions with respect to the original periodograms. For example if the 
ˆ 
 values ˜ r , k = 1 , 2 , . . . , ˆ N , appear more than η times in H, then
k 

18 
he estimated change-point locations with respect to the original 

ata are ˆ r k = s ( ̃ r k − 1) +  s 2 � . 
Pre-averaging. Pre-averaging is a strategy where data are aver- 

ged over short time periods. Here, for a given scale number s and 

periodograms 
{

W 

q 
t 

}
t=1 , 2 , ... ,T 

and q = 1 , 2 , . . . , d, we let S ∗ =  T /s �
nd we define now for each q , 

˜ 
 

(q ) 
s ∗ = 

1 

s 

s ∗s ∑ 

t=(s ∗−1) s +1 

W 

(q ) 
t , for s ∗ = 1 , 2 , . . . , S ∗ − 1 

˜ 
 

(q ) 
S ∗ = (T − (S ∗ − 1) s ) −1 

T ∑ 

t=(S ∗−1) s +1 

W 

(q ) 
t . 

he next step is to apply CCID on 

˜ W s ∗
}

s ∗=1 , 2 , ... ,S ∗
= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

˜ W 

(1) 
s ∗

˜ W 

(2) 
s ∗

. . . 
˜ W 

(Q ) 
s ∗

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

s ∗=1 , 2 , ... ,S ∗

o obtain the estimated change-points, namely ˜ ˜ r 1 , ̃  ˜ r 2 , . . . , ̃  ˜ r ˆ N 
, in in-

reasing order. To estimate the original locations of the change- 

oints we define ˆ r k = 

(
˜ ˜ r k − 1 

)
s + 

⌈
s 
2 

⌉
, k = 1 , 2 , . . . , ˆ N . There is a

rade-off in the choice of the scaling parameter s . If the value of 

 is large, then we assume that our new (pre-averaged) data are 

ess autocorrelated but the amount of pre-processing obviously in- 

reases, which results in loss in power (due to less data) and also 

ossibly in lack in the accuracy of the detected change-point loca- 

ions. 

.2. CCID Constants and recommendations 

For CCID, we provided results for the L 2 and the L ∞ 

thresh- 

ld approaches and the L and the L ∞ 

information criteria. Our 
2 
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Fig. 13. The detected change-points for the resting state fMRI data using CCID with threshold L 2 (top) and information criterion L 2 IC (bottom) using a minimum distance 

between change-points of δ = 1 (left) and δ = 40 (right). The y-axis depicts the subject number while the x-axis shows the change-point location times. 
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hoice of constants for the approaches ( c 1 for the L 2 threshold; 

 2 for the L ∞ 

threshold and α for the information criteria) pro- 

ided a balance between specificity and sensitivity in all signals 

xamined in our large scale simulation study and others not in- 

luded. Hence, all constants have been calibrated on higher dimen- 

ions. However, it is important that CCID remains robust to alterna- 

ive choices to these parameters and the practitioner has the op- 

ion to obtain more change-points by decreasing these threshold 

alue. 

In our numerical experience, it appears that the L ∞ 

thresh- 

ld performs best for low dimensional cases ( P < 5 ) with the L 2 
hreshold over detecting the change points. The reason for this 

s that the L ∞ 

threshold boils down to just one cross covari- 

nce while the L 2 threshold aggregates over all series. Hence, 

he L 2 threshold works better for small changes across many 

eries. 

. Conclusion 

In this study, we developed a new method, called Cross- 

ovariance isolate detect (CCID), to detect multiple change-points 

n the second-order (cross-covariance or network) structure of 

ultivariate (possibly) high-dimensional time series. We assumed 

hat the number and location of the change-points are unknown a 

riori. CCID first converted our multivariate time series into pe- 

iodograms and cross-periodograms. To detect the change-points 

CID used a scaled CUSUM statistic and aggregated across the 

ultivariate time series by adding only those that pass a cer- 

ain threshold. CCID adapted the Isolate Detect principle to find 

he multiple change-points. ID works by first isolating each of the 

rue change-points within subintervals and then secondly detect- 

ng them within these subintervals. We showed using an exten- 

ive simulation study that CCID generally had higher statistical 

ower compared to existing methodologies. Our simulation study 
19 
lso showed that CCID performs better than existing methods in 

arious challenging scenarios where the subject alternates between 

ask and rest. In comparison, binary segmentation (used by all pre- 

ious change-point methods in the neuroscience literature) failed 

o perform as well in this scenario. In addition, using empirical 

ask based and resting-state fMRI data, CCID provided significant 

uperior results in terms of change-point detection to the existing 

ethods. 

We showed that CCID is also more computationally efficient 

han the competing methods and in many settings is at least an 

rder of magnitude faster than them. Computational costs can be 

hallenging at higher dimensions as the first step of our method 

equires the transformation of the multivariate time series to pe- 

iodograms and cross-periodograms. While in theory a large num- 

er of ROIs is possible, in practice we may need to make modi- 

cations to our proposed method to accommodate a larger num- 

er of ROIs (whole brain dynamics or voxel time series). We could 

ake advantage of parallel computing in order to speed up the 

ethod. 

CCID is novel as it allows for detection in the presence of fre- 

uent changes of possibly small magnitudes, can assign change- 

oints to one or multiple brain regions, and is computationally 

ery fast. We also proposed new information criteria for CCID to 

dentify the change-points. While CCID was applied to task based 

nd resting-state fMRI data in this work, it could seamlessly be 

pplied to Electroencephalography (EEG) or Magnetoencephalog- 

aphy (MEG), or electrocorticography (ECoG) data. The outputs of 

CID could also be used as an input into a classification model 

or predicting brain disorders. Furthermore, while previous studies 

ave attempted to find differences between controls and patients 

ith brain disorders such as Alzheimer’s disease ( Hart et al., 2018 ), 

nderstand FC changes in cerebral palsy before and after treat- 

ent ( Bakhtiari et al., 2017 ), and understand the role of speech 
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roduction in reading ( Cummine et al., 2016 ) using static FC net- 

orks, it would be very interesting to see if dynamic FC esti- 

ated via CCID provides more detailed descriptions of these com- 

licated processes. To conclude, CCID pertains to a general set- 

ing and can also be used in a variety of situations where one 

ishes to study the evolution of a high dimensional network over 

ime. 

oftware 

The authors have released an open source R package by the 

ame of ccid . The package can be downloaded from CRAN. 
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Table 11 

The estimated number and location of the change-points for the 4 RO

Segmentation (SBS), Factor with common components (Factor com), Fact

(2016) (BO), and Cross-covariance isolate detect with the L 2 threshold (

(CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). A δ in the na

points of 40 time points was enforced. The computational times for each

Estimated 

ID Method Number 

SBS 0 

Factor com 0 

Factor id 1 

BO 1 

CCID. L 2 8 (3

1 CCID. L ∞ 3 

CCID. L 2 IC 12 (36, 61, 78,

CCID. L ∞ IC 2 

δCCID. L 2 3 

δCCID. L ∞ 2 

δCCID. L 2 IC 3 

δCCID. L ∞ IC 2 

SBS 0 

Factor com 0 

Factor id 1 

BO 0 

CCID. L 2 7 

2 CCID. L ∞ 2 

CCID. L 2 IC 2 

CCID. L ∞ IC 0 

δCCID. L 2 2 

δCCID. L ∞ 1 

δCCID. L 2 IC 1 

δCCID. L ∞ IC 0 

SBS 0 

Factor com 0 

Factor id 0 

BO 0 

CCID. L 2 5 

3 CCID. L ∞ 1 

CCID. L 2 IC 2 

CCID. L ∞ IC 0 

δCCID. L 2 3 

δCCID. L ∞ 1 

δCCID. L 2 IC 2 

δCCID. L ∞ IC 0 

SBS 1 

Factor com 1 

Factor id 1 

BO 0 

CCID. L 2 7 
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ppendix A 

The results for the real data presented in tables. 
Is and heart rate task based fMRI data set for Sparsified Binary 

or with idiosyncratic components (Factor id), Barnett and Onnela 

CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion 

me of a method indicates a minimum distance between change- 

 method are also provided. 

Locations Time (s) 

- 1.51 

- 2.19 

43 2.19 

182 10.19 

4, 70, 78, 115, 116, 137, 181, 185) 0.02 

(70, 80, 138) 0.01 

 86, 113, 117, 128, 138, 173, 175, 185, 209) 0.05 

(138, 180) 0.02 

(70,137,185) 0.02 

(70, 138) 0.01 

(61, 138, 185) 0.05 

(138, 180) 0.02 

- 1.37 

- 2.33 

161 2.33 

- 5.55 

(28, 60, 65, 126, 133, 170, 175) 0.05 

(130,133) 0.01 

(170, 175) 0.01 

- 0.02 

(65,133) 0.02 

133 0.01 

170 0.05 

- 0.02 

- 1.47 

- 3.47 

- 3.47 

- 5.67 

(19, 20, 73, 112, 134) 0.02 

133 0.02 

(73, 209) 0.04 

- 0.09 

(19,73,134) 0.02 

133 0.01 

(73, 209) 0.05 

- 0.02 

124 1.36 

125 3.30 

35 3.30 

- 5.16 

(20, 27, 75, 76, 102, 121, 149) 0.01 

( continued on next page ) 
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Table 11 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

4 CCID. L ∞ 3 (55, 101,121) 0.02 

CCID. L 2 IC 11 (20, 27, 28, 55, 75, 76, 102, 105, 121, 151, 209) 0.05 

CCID. L ∞ IC 3 (55,101,121) 0.02 

δCCID. L 2 2 (20,121) 0.02 

δCCID. L ∞ 2 (55,121) 0.01 

δCCID. L 2 IC 2 (121, 209) 0.05 

δCCID. L ∞ IC 2 (55,121) 0.02 

SBS 0 - 1.47 

Factor com 0 - 3.52 

Factor id 0 - 3.52 

BO 0 - 5.04 

CCID. L 2 6 (13, 60, 62, 68, 70, 208) 0.03 

5 CCID. L ∞ 3 (60,63,68) 0.02 

CCID. L 2 IC 2 (57,70) 0.03 

CCID. L ∞ IC 2 (60,68) 0.03 

δCCID. L 2 3 (13, 70, 208) 0.02 

δCCID. L ∞ 1 68 0.01 

δCCID. L 2 IC 1 70 0.05 

δCCID. L ∞ IC 1 68 0.02 

SBS 1 73 1.41 

Factor com 0 - 3.69 

Factor id 1 84 3.69 

BO 1 170 10.05 

CCID. L 2 12 (44, 46, 78, 80, 112, 118, 122, 131, 157, 167, 171, 193) 0.02 

6 CCID. L ∞ 6 (78, 118, 124, 126, 167, 171) 0.01 

CCID. L 2 IC 5 (78, 118, 126, 167, 171) 0.06 

CCID. L ∞ IC 10 (78, 80, 96, 118, 122, 131, 157, 167, 171, 208) 0.03 

δCCID. L 2 2 (78, 171) 0.02 

δCCID. L ∞ 3 (78, 126, 171) 0.01 

δCCID. L 2 IC 2 (78, 171) 0.05 

δCCID. L ∞ IC 3 (78, 126, 171) 0.02 

SBS 0 - 1.42 

Factor com 1 78 3.23 

Factor id 1 78 3.23 

BO 0 - 13.56 

CCID. L 2 7 (60, 63, 76, 92, 150, 164, 165) 0.01 

7 CCID. L ∞ 1 76 0.03 

CCID. L 2 IC 2 (60,76) 0.03 

CCID. L ∞ IC 2 (64,76) 0.01 

δCCID. L 2 2 (76, 150) 0.02 

δCCID. L ∞ 1 76 0.01 

δCCID. L 2 IC 1 76 0.05 

δCCID. L ∞ IC 1 76 0.02 

SBS 0 - 1.40 

Factor com 0 - 3.38 

Factor id 0 - 3.38 

BO 2 (102, 145) 5.37 

CCID. L 2 9 (35, 38, 63, 70, 98, 112, 130, 185, 195) 0.02 

8 CCID. L ∞ 4 (35, 38, 65, 129) 0.02 

CCID. L 2 IC 12 (35, 38, 63, 70, 98, 112, 130, 145, 169, 185, 196, 209) 0.04 

CCID. L ∞ IC 4 (35, 38, 63, 70) 0.02 

δCCID. L 2 3 (35, 130, 195) 0.02 

δCCID. L ∞ 2 (35, 129) 0.01 

δCCID. L 2 IC 3 (35, 145, 196) 0.05 

δCCID. L ∞ IC 2 (35, 129) 0.02 

SBS 0 - 1.45 

Factor com 2 (59, 141) 3.72 

Factor id 0 - 3.72 

BO 1 125 5.37 

CCID. L 2 12 (30, 33, 59, 75, 105, 108, 123, 136, 164, 165, 204, 207) 0.01 

9 CCID. L ∞ 4 (60, 74, 125, 136) 0.01 

CCID. L 2 IC 4 (59, 75, 123, 136) 0.04 

CCID. L ∞ IC 4 (60,74,125,136) 0.01 

δCCID. L 2 3 (59, 136, 204) 0.02 

δCCID. L ∞ 2 (60, 136) 0.01 

δCCID. L 2 IC 2 (59, 136) 0.05 

δCCID. L ∞ IC 2 (60, 136) 0.02 

SBS 0 - 1.58 

Factor com 0 - 3.34 

Factor id 0 - 3.34 

BO 2 (61,67) 12.51 

CCID. L 2 5 (9, 60, 63, 71, 139) 0.01 

( continued on next page ) 
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Table 11 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

10 CCID. L ∞ 1 71 0.02 

CCID. L 2 IC 3 (60,63,71) 0.03 

CCID. L ∞ IC 0 - 0.03 

δCCID. L 2 3 (9, 71, 139) 0.02 

δCCID. L ∞ 1 71 0.01 

δCCID. L 2 IC 1 71 0.05 

δCCID. L ∞ IC 0 - 0.02 

SBS 0 - 1.52 

Factor com 0 - 4.05 

Factor id 0 - 4.05 

BO 0 - 5.12 

CCID. L 2 7 (31, 59, 88, 127, 146, 164, 210) 0.01 

11 CCID. L ∞ 2 (76, 160) 0.02 

CCID. L 2 IC 3 (59, 146, 169) 0.03 

CCID. L ∞ IC 1 160 0.02 

δCCID. L 2 3 (31, 164, 210) 0.02 

δCCID. L ∞ 2 76, 160 0.01 

δCCID. L 2 IC 2 59, 169 0.05 

δCCID. L ∞ IC 1 160 0.02 

SBS 1 109 1.49 

Factor com 1 96 2.80 

Factor id 0 - 2.80 

BO 0 - 10.26 

CCID. L 2 11 (2, 49, 69, 70, 94, 114, 128, 149, 185, 195, 201) 0.02 

12 CCID. L ∞ 5 (2, 59, 66,97, 195) 0.02 

CCID. L 2 IC 5 (2, 49, 114, 167, 193) 0.05 

CCID. L ∞ IC 3 (2, 59, 114) 0.03 

δCCID. L 2 4 (2, 49, 114, 195) 0.02 

δCCID. L ∞ 3 (2, 66, 195) 0.01 

δCCID. L 2 IC 4 (2, 49, 114, 193) 0.05 

δCCID. L ∞ IC 3 (2, 59, 114) 0.02 

SBS 0 - 1.42 

Factor com 0 - 2.83 

Factor id 0 - 2.83 

BO 0 - 5.17 

CCID. L 2 4 (7, 112, 114, 195) 0.02 

13 CCID. L ∞ 0 - 0.02 

CCID. L 2 IC 0 - 0.02 

CCID. L ∞ IC 0 - 0.02 

δCCID. L 2 3 (7, 112, 195) 0.02 

δCCID. L ∞ 0 - 0.01 

δCCID. L 2 IC 0 - 0.05 

δCCID. L ∞ IC 0 - 0.02 

SBS 1 155 1.40 

Factor com 1 151 3.20 

Factor id 1 168 3.20 

BO 1 153 10.29 

CCID. L 2 8 (12, 16, 68, 70, 74, 125, 198, 202) 0.02 

14 CCID. L ∞ 2 (150,192) 0.04 

CCID. L 2 IC 4 (92, 125, 202, 207) 0.03 

CCID. L ∞ IC 2 (134, 192) 0.03 

δCCID. L 2 3 (12, 74, 125, 198) 0.02 

δCCID. L ∞ 2 (150, 192) 0.01 

δCCID. L 2 IC 2 (125, 202) 0.05 

δCCID. L ∞ IC 2 (134, 192) 0.02 

SBS 1 138 1.61 

Factor com 3 (31, 111, 138) 3.10 

Factor id 0 - 3.10 

BO 1 134 10.03 

CCID. L 2 6 (60, 63, 75, 110, 131, 138) 0.02 

15 CCID. L ∞ 1 137 0.01 

CCID. L 2 IC 3 (75, 110, 155) 0.03 

CCID. L ∞ IC 1 137 0.01 

δCCID L 2 1 138 0.02 

δCCID. L ∞ 1 137 0.01 

δCCID. L 2 IC 2 (110, 155) 0.05 

δCCID. L ∞ IC 1 137 0.02 

SBS 0 - 1.47 

Factor com 0 - 2.98 

Factor id 0 - 2.98 

BO 0 - 10.12 

CCID. L 2 16 (14, 25, 59, 79, 105, 108, 117, 130, 132, 138, 184, 185, 

195, 196, 198, 205) 

0.01 

( continued on next page ) 
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Table 11 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

16 CCID. L ∞ 5 (65, 68, 108, 196, 205) 0.01 

CCID. L 2 IC 10 (25, 59, 90, 93, 105, 108, 138, 195, 198, 205) 0.07 

CCID. L ∞ IC 2 (65, 108) 0.02 

δCCID. L 2 3 (59, 138, 205) 0.02 

δCCID. L ∞ 3 (65, 108, 205) 0.01 

δCCID. L 2 IC 3 (59, 108, 195) 0.05 

δCCID. L ∞ IC 2 (65, 108) 0.02 

SBS 0 - 1.45 

Factor com 1 188 3.09 

Factor id 1 187 3.09 

BO 2 (111,190) 14.48 

CCID. L 2 10 (9, 10, 63, 74, 108, 109, 156, 187, 189, 195) 0.02 

17 CCID. L ∞ 6 (62, 70, 125, 154, 187, 189) 0.01 

CCID. L 2 IC 12 (9, 10, 63, 74, 108, 109, 126, 156, 161, 187, 195, 210) 0.03 

CCID. L ∞ IC 4 (62, 70, 154, 187) 0.03 

δCCID. L 2 3 (9, 74, 156) 0.02 

δCCID. L ∞ 2 (62, 154) 0.01 

δCCID. L 2 IC 3 (9,74, 156) 0.05 

δCCID. L ∞ IC 2 (62, 154) 0.02 

SBS 0 - 1.44 

Factor com 1 75 2.83 

Factor id 0 - 2.83 

BO 2 (46, 186) 13.86 

CCID. L 2 6 (83, 125, 165, 167, 175, 179) 0.02 

18 CCID. L ∞ 1 145 0.03 

CCID. L 2 IC 1 179 0.02 

CCID. L ∞ IC 1 184 0.02 

δCCID. L 2 3 (59, 138, 205) 0.02 

δCCID. L ∞ 3 (65, 108, 205) 0.01 

δCCID. L 2 IC 1 179 0.05 

δCCID. L ∞ IC 1 184 0.02 

SBS 0 - 1.42 

Factor com 0 - 3.25 

Factor id 0 - 3.25 

BO 0 - 5.26 

CCID. L 2 8 (61, 71, 125, 130, 142, 186, 194, 195) 0.02 

19 CCID. L ∞ 4 (56, 75, 130, 141) 0.01 

CCID. L 2 IC 8 (61, 71, 125, 130, 134, 142, 177, 209) 0.03 

CCID. L ∞ IC 3 (75, 130, 141) 0.02 

δCCID. L 2 3 (71, 142, 186) 0.02 

δCCID. L ∞ 2 (75, 141) 0.01 

δCCID. L 2 IC 3 (59, 108, 195) 0.05 

δCCID. L ∞ IC 2 (71, 142) 0.02 

SBS 0 - 1.43 

Factor com 0 - 3.45 

Factor id 0 - 3.45 

BO 0 - 5.12 

CCID. L 2 5 (96, 101, 104, 139, 140) 0.01 

20 CCID. L ∞ 1 104 0.02 

CCID. L 2 IC 0 - 0.03 

CCID. L ∞ IC 0 - 0.01 

δCCID. L 2 1 104 0.02 

δCCID. L ∞ 1 104 0.01 

δCCID. L 2 IC 0 - 0.05 

δCCID. L ∞ IC 0 - 0.02 

SBS 0 - 1.42 

Factor com 0 - 2.31 

Factor id 0 - 2.31 

BO 0 - 5.18 

CCID. L 2 12 (7, 47, 62, 97, 100, 112, 115, 126, 146, 160, 169, 183) 0.01 

21 CCID. L ∞ 2 (7, 160) 0.02 

CCID. L 2 IC 11 (21, 47, 62, 98, 100, 112, 115, 146, 160, 169, 183) 0.05 

CCID. L ∞ IC 3 (7, 160, 183) 0.03 

δCCID. L 2 4 (7, 62, 115, 183) 0.02 

δCCID. L ∞ 2 (7, 160) 0.01 

δCCID. L 2 IC 3 (62, 125, 183) 0.05 

δCCID. L ∞ IC 2 (7, 183) 0.02 

SBS 0 - 1.40 

Factor com 0 - 2.36 

Factor id 0 - 2.36 

BO 0 - 5.10 

CCID. L 2 7 (61, 63, 101, 105, 130, 179, 209) 0.01 

( continued on next page ) 
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Table 11 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

22 CCID. L ∞ 2 (73, 135) 0.03 

CCID. L 2 IC 8 (60, 71, 101, 125, 150, 176, 179, 209) 0.04 

CCID. L ∞ IC 2 (73, 135) 0.02 

δCCID. L 2 2 (61, 179) 0.02 

δCCID. L ∞ 2 (73, 135) 0.01 

δCCID. L 2 IC 3 (60, 101, 179) 0.05 

δCCID. L ∞ IC 2 (73, 135) 0.02 

SBS 0 - 1.44 

Factor com 1 174 3.11 

Factor id 0 - 3.11 

BO 0 - 5.22 

CCID. L 2 8 (60, 69, 128, 145, 155, 176, 194, 207) 0.02 

23 CCID. L ∞ 1 173 0.01 

CCID. L 2 IC 5 (60, 69, 173, 194, 207) 0.06 

CCID. L ∞ IC 1 173 0.03 

δCCID. L 2 2 (60, 145) 0.02 

δCCID. L ∞ 1 173 0.01 

δCCID. L 2 IC 2 (60, 173) 0.05 

δCCID. L ∞ IC 1 173 0.02 

Table 12 

The estimated number and location of the change-points for the resting state fMRI data set for Sparsified Binary Segmentation (SBS), Factor with common com- 

ponents (Factor com), Factor with idiosyncratic components (Factor id), Barnett and Onnela (2016) (BO), and Cross-covariance isolate detect with the L 2 threshold 

(CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion (CCID. L 2 IC) and the L ∞ information criterion (CCID. L ∞ IC). A δ in the name of a method indicates 

a minimum distance between change-points of 40 time points was enforced. The computational times for each method are also provided. 

Estimated 

ID Method Number Locations Time (s) 

SBS 1 72 142.90 

Factor com 0 - 91.03 

Factor id 0 - 91.03 

BO 9 (11, 35, 66, 83, 116, 139, 178, 193, 211) 352.57 

CCID. L 2 15 (22, 41, 73, 85, 90, 124, 134, 145, 190, 198, 206, 217, 257, 264, 275) 9.23 

1 CCID. L ∞ 30 (18, 31, 51, 72, 74, 78, 86, 118, 121, 123, 125, 129, 131, 134, 138, 

146, 181, 186, 

188, 190, 193, 

195, 198, 201, 

207, 228, 256, 

260, 262, 266) 

17.42 

CCID. L 2 IC 17 (14, 25, 38, 52, 64, 73, 90, 108, 124, 132, 146, 169, 194, 222, 236, 253, 276) 56.42 

CCID. L ∞ IC 13 (18, 44, 64, 97, 118, 138, 158, 181, 197, 216, 236, 254, 266) 54.69 

δCCID. L 2 4 (90, 145, 190, 257) 0.02 

δCCID. L ∞ 4 (18, 86, 146, 256) 0.01 

δCCID. L 2 IC 5 (38, 108, 194, 236, 276) 0.05 

δCCID. L ∞ IC 5 (18, 64, 138, 181, 254) 0.02 

SBS 1 88 119.46 

Factor com 0 - 92.24 

Factor id 0 - 92.24 

BO 8 (47, 57, 115, 176, 193, 220, 232, 255) 373.02 

CCID. L 2 14 (2, 47, 59, 74, 85, 96, 125, 154, 182, 196, 244, 252, 274, 282) 17.69 

2 CCID. L ∞ 22 (6, 8, 28, 47, 74, 88, 90, 92, 97, 100, 123, 125, 157, 188, 196, 218, 

232, 234, 236, 

257, 274, 276) 

17.30 

CCID. L 2 IC 8 (13, 47, 59, 86, 96, 154, 206, 235) 83.03 

CCID. L ∞ IC 7 (9, 47, 74, 88, 148, 236, 274) 83.69 

δCCID. L 2 5 (2, 47, 96, 154, 274) 0.02 

δCCID. L ∞ 4 (8, 125, 188, 274) 0.01 

δCCID. L 2 IC 4 (47, 96, 154, 235) 0.05 

δCCID. L ∞ IC 4 (9, 88, 148, 274) 0.02 

SBS 2 (117, 145) 121.60 

Factor com 1 40 90.54 

Factor id 0 - 90.54 

BO 9 (89, 122, 153, 164, 179, 207, 220, 249, 261) 369.08 

CCID. L 2 12 (2, 8, 18, 65, 93, 100, 115, 166, 225, 251, 262, 278) 13.96 

3 CCID. L ∞ 18 (18, 37, 57, 87, 117, 119, 154, 182, 186, 188, 190, 193, 218, 221, 225, 229, 

247, 266) 

16.83 

CCID. L 2 IC 11 (8, 47, 81, 101, 116, 158, 166, 200, 225, 250, 278) 49.96 

CCID. L ∞ IC 3 (18, 64, 247) 49.69 

δCCID. L 2 4 (18, 115, 166, 251) 0.02 

δCCID. L ∞ 3 (18, 87, 218) 0.01 

δCCID. L 2 IC 4 (8, 116, 166, 278) 0.05 

δCCID. L ∞ IC 3 (18, 64, 247) 0.02 

( continued on next page ) 
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Table 12 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

SBS 1 173 114 

Factor com 0 - 131.67 

Factor id 0 - 131.67 

BO 1 229 210.41 

CCID. L 2 9 (2, 28, 46, 73, 81, 153, 231, 242, 262) 14.57 

4 CCID. L ∞ 22 (2, 27, 36, 43, 46, 50, 68, 97, 99, 135, 148, 172, 195, 197, 227, 229, 

252, 256, 258, 

261, 263, 266) 

18.58 

CCID. L 2 IC 11 (8, 27, 46, 73, 81, 111, 153, 190, 231, 242, 275) 44.10 

CCID. L ∞ IC 3 (7, 186, 263) 115.88 

δCCID. L 2 4 (2, 81, 153, 231) 0.02 

δCCID. L ∞ 3 (2, 197, 252) 0.01 

δCCID. L 2 IC 5 (8, 111, 190, 231, 275) 0.05 

δCCID. L ∞ IC 3 (7, 186, 263) 0.02 

SBS 1 189 115.89 

Factor com 1 178 159.23 

Factor id 0 - 159.23 

BO 10 (30, 63, 84, 107, 141, 184, 204, 235, 248, 263) 440.72 

CCID. L 2 9 (6, 20, 65, 95, 115, 172, 221, 231, 269) 10.61 

5 CCID. L ∞ 19 (6, 12, 22, 42, 67, 70, 88, 110, 112, 127, 158, 177, 180, 182, 207, 

234, 236, 257, 

278) 

13.07 

CCID. L 2 IC 7 (6, 74, 117, 172, 197, 207, 267) 29.89 

CCID. L ∞ IC 8 (22, 68, 107, 112, 159, 182, 224, 263) 49.26 

δCCID L 2 4 (20, 95, 172, 221) 0.02 

δCCID. L ∞ 4 (67, 127, 207, 278) 0.01 

δCCID. L 2 IC 5 (6, 74, 117, 172, 267) 0.05 

δCCID. L ∞ IC 4 (22, 112, 159, 224) 0.02 

SBS 2 (116, 208) 111.42 

Factor com 1 94 139.20 

Factor id 0 - 139.20 

BO 10 (38, 51, 62, 90, 128, 155, 182, 200, 226, 237) 372.46 

CCID. L 2 13 (17, 56, 89, 99, 112, 125, 144, 157, 173, 196, 207, 227, 267) 12.01 

6 CCID. L ∞ 22 (25, 57, 87, 93, 97, 100, 102, 104, 113, 116, 137, 167, 187, 208, 211, 

237, 257, 260, 

264, 268, 274 

277 

23.86 

CCID. L 2 IC 8 (41, 90, 99, 144, 203, 210, 239, 266) 67.78 

CCID. L ∞ IC 9 (25, 57, 89, 93, 113, 182, 207, 257, 277) 97.33 

δCCID. L 2 5 (56, 125, 173, 227, 267) 0.02 

δCCID. L ∞ 5 (25, 113, 167, 211, 257) 0.01 

δCCID. L 2 IC 5 (41, 90, 144, 210, 266) 0.05 

δCCID. L ∞ IC 4 (25, 89, 182, 277) 0.02 

SBS 2 (102,151) 121.45 

Factor com 0 - 142.64 

Factor id 0 - 142.64 

BO 8 (50, 66, 103, 115, 139, 169, 239, 264) 396.44 

CCID. L 2 9 (2, 61, 70, 117, 173, 207, 234, 245, 275) 13.94 

7 CCID. L ∞ 16 (18, 21, 47, 71, 88, 114, 128, 157, 169, 194, 219, 237, 257) 16.82 

CCID. L 2 IC 1 85 37.50 

CCID. L ∞ IC 4 (88, 113, 194, 219) 37.47 

δCCID. L 2 4 (2, 70, 117, 245) 0.02 

δCCID. L ∞ 5 (18, 88, 128, 219, 265) 0.01 

δCCID. L 2 IC 1 85 0.05 

δCCID. L ∞ IC 2 (113, 219) 0.02 

SBS 1 130 121.22 

Factor com 0 - 171.89 

Factor id 0 - 171.89 

BO 12 (12, 36, 61, 84, 96, 121, 131, 192, 221, 238, 251, 265) 409.98 

CCID. L 2 14 (15, 53, 87, 98, 126, 134, 141, 150, 167, 190, 206, 235, 264, 282) 9.83 

8 CCID. L ∞ 23 (2, 24, 53, 68, 71, 73, 98, 116, 138, 141, 144, 147, 151, 173, 188, 

206, 225, 227, 

259, 261, 264, 

273, 278) 

20.29 

CCID. L 2 IC 7 (126, 150, 186, 203, 214, 234, 264) 36.68 

CCID. L ∞ IC 4 (42, 196, 237, 278) 84.21 

δCCID. L 2 4 (53, 98, 190, 235) 0.02 

δCCID. L ∞ 3 (2, 53, 188) 0.01 

δCCID. L 2 IC 2 (126, 234) 0.05 

δCCID. L ∞ IC 4 (42, 196, 237, 278) 0.02 

SBS 1 212 110.36 

Factor com 1 236 139.03 

Factor id 0 - 139.03 

BO 10 (34, 59, 81, 124, 147, 168, 200, 215, 244, 257) 365.12 

CCID. L 2 8 (68, 79, 145, 189, 201, 235, 246, 270) 11.36 

( continued on next page ) 
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Table 12 ( continued ) 

Estimated 

ID Method Number Locations Time (s) 

9 CCID. L ∞ 19 (8, 11, 35, 57, 60, 87, 113, 134, 137, 142, 172, 188, 217, 234, 246, 

269, 271, 273, 

277) 

15.39 

CCID. L 2 IC 9 (29, 42, 68, 87, 127, 171, 189, 215, 264) 33.94 

CCID. L ∞ IC 5 (51, 86, 177, 225, 269) 57.17 

δCCID. L 2 3 (79, 145, 189) 0.02 

δCCID. L ∞ 4 (11, 87, 142, 246) 0.01 

δCCID. L 2 IC 6 (29, 87, 127, 171, 215, 264) 0.05 

δCCID. L ∞ IC 4 (86, 177, 225, 269) 0.02 

SBS 1 202 109.35 

Factor com 0 - 178.42 

Factor id 0 - 178.42 

BO 11 (33, 69, 97, 112, 129, 149, 161, 193, 211, 237, 249) 363.08 

CCID. L 2 12 (2, 42, 65, 97, 108, 149, 166, 200, 215, 235, 251, 282) 11.47 

10 CCID. L ∞ 28 (17, 43, 45, 67, 74, 77, 97, 117, 119, 148, 159, 162, 164, 167, 170, 

172, 186, 188, 

198, 200, 202, 

205, 207, 233, 

235, 237, 256, 

282) 

16.06 

CCID. L 2 IC 10 (17, 41, 66, 82, 117, 144, 166, 234, 251, 276) 42.29 

CCID. L ∞ IC 12 (17, 38, 58, 65, 107, 119, 138, 157, 188, 220, 256, 282) 101.19 

δCCID. L 2 5 (2, 42, 108, 215, 282) 0.02 

δCCID. L ∞ 5 (17, 67, 117, 186, 282) 0.01 

δCCID. L 2 IC 5 (17, 82, 144, 234, 276) 0.05 

δCCID. L ∞ IC 5 (17, 58, 119, 188, 282) 0.02 

Table 13 

The distribution of ˆ N − N and the scaled Hausdorff distance over 100 simulated data sequences from Simulations 1, 3, and 5, with the noise following the t 5 
distribution, for the Cross-covariance isolate detect with the L 2 threshold (CCID. L 2 ), the L ∞ threshold (CCID. L ∞ ), the L 2 information criterion (CCID. L 2 IC) and the 

L ∞ information criterion (CCID. L ∞ IC). The computational times are also provided. 

ˆ N − N

Simulation data Method ≤ −3 -2 -1 0 1 2 ≥ 3 d H Time (s) 

SBS - - - 100 0 0 0 - 2.82 

Factor com - - - 100 0 0 0 - 16.62 

Factor id - - - 95 5 0 0 - 16.62 

BO - - - 85 15 0 0 - 7.66 

1 CCID. L 2 - - - 39 21 25 15 - 0.28 

CCID. L ∞ - - - 28 23 21 28 - 0.36 

CCID. L 2 IC - - - 97 1 2 0 - 0.42 

CCID. L ∞ IC - - - 98 1 1 0 - 0.39 

SBS 5 5 16 74 0 0 0 0.50 3.90 

Factor com 100 0 0 0 0 0 0 4 18.22 

Factor id 73 11 10 6 0 0 0 2.96 18.22 

BO 3 2 13 57 22 3 0 0.55 39.87 

3 CCID. L 2 0 0 12 59 21 6 2 0.31 0.17 

CCID. L ∞ 0 0 4 44 30 16 6 0.35 0.18 

CCID. L 2 IC 1 1 12 74 7 5 0 0.31 0.56 

CCID. L ∞ IC 1 5 11 76 3 4 0 0.37 0.32 

SBS 69 26 1 4 0 0 0 3.03 3.95 

Factor com 100 0 0 0 0 0 0 4 19.32 

Factor id 16 11 2 71 0 0 0 0.89 19.32 

BO 60 21 8 6 4 1 0 2.89 24.26 

5 CCID. L 2 0 0 0 57 24 12 7 0.21 0.18 

CCID. L ∞ 0 2 6 37 21 13 21 0.45 0.21 

CCID. L 2 IC 15 10 2 53 7 10 3 0.94 0.65 

CCID. L ∞ IC 24 19 1 44 5 6 1 1.38 0.46 
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